Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is an acknowledged theory that a faster growth rate, determined by various environmental drivers, may boost the survival of larval and juvenile fish. In this study we examined the differences in the growth rate of larval and juvenile cod (age 2 – 136 d; SL: 4.1 – 39.2 mm) between the years 2006 and 2014, sub-areas of the Baltic Sea (Bornholm Basin, BB; Słupsk Furrow, SF; Gdansk Basin, GB), and seasons (spring and summer). The average growth rate for all specimens was 0.25 mm/d, with significantly lower values between 2012 and 2014 than between 2006 and 2011. A reduction in zooplankton biomass, especially the large zooplankton fraction, was observed after the 2006–2008 period, which was related to the prevailing temperature conditions in the surface layers. The reduction in zooplankton biomass was accompanied by changes in the structure of zooplankton: less T. longicornis, C. hamatus, and Pseudocalanus spp., and more Acartia spp. The results suggest that the inter-annual differences observed in zooplankton biomass and structure are likely responsible for the observed reduction in the growth rate of cod larvae between 2012 and 2014 compared to the years between 2006 and 2011. The growth rate reduction could be one of the reasons for the decline in the recruitment of eastern Baltic cod between the years 2013 and 2015, after the high recruitment years of the period 2011-2012.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
399--419
Opis fizyczny
Bibliogr. 52 poz., map., rys., tab., wykr.
Twórcy
autor
- National Marine Fisheries Research Institute, Department of Fisheries Oceanography and Marine Ecology Gdynia, Poland
autor
- National Marine Fisheries Research Institute, Department of Fisheries Oceanography and Marine Ecology Gdynia, Poland
Bibliografia
- [1]. Anderson, J. T. (1989). A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. Journal of Northwest Atlantic Fishery Science, 8, 55-66. https://doi.org/10.2960/J.v8.a6
- [2]. Biernaczyk, M., Neja, Z. Opanowski, A., Stepanowska, K., Formicki, K., Wawrzyniak, W. (2016). Reproduction of cod, Gadus morhua (Actinopterygii: Gadiformes: Gadidae), from the Gdańsk Deep (Baltic Sea) under controlled conditions. Acta Ichthyologica et Piscatoria 0137-1592 46 3 239-246 https://doi.org/10.3750/AIP2016.46.3.07
- [3]. Boltaña, S., Sanhueza, N., Aguilar, A., Gallardo-Escarate, C., Arriagada, G., Valdes, J.A., Soto, D., Quiñones, R.A. (2017). Influences of thermal environment on fish growth. Ecol Evol. Jul 26;7(17):6814-6825. https://doi.org/10.1002/ ece3.3239
- [4]. Daewel, U., Hjøllo, S. S., Huret, M., Ji, R., Maar, M., Niiranen, S., Travers-Trolet, M., Peck, M. A., & van de Wolfshaar, K. E. (2014). Predation control of zooplankton dynamics: A review of observations and models.-. ICES Journal of Marine Science, 71(2), 254-271. https://doi.org/10.1093/ icesjms/fst125
- [5]. Diekmann, A. B. S., Clemmesen, C., St. John, M. A., Paulsen, M., & Peck, M. A. (2012). Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: A case study of Acartia, Temora and Eurytemora species in the south-west. Publication-Baltic Marine Biologists, 159(11), 2399-2414. https://doi. org/10.1007/s00227-012-1955-0
- [6]. Economou A.N., (1991). Food and feeding ecology of five gadoid larvae in the northern North Sea, ICES Journal of Marine Science, 47(3), 1991, Pages 339-351, https://doi. org/10.1093/icesjms/47.3.339
- [7]. Fey, D. P. (2005). Is the marginal otolith increment width a reliable recent growth index for larval and juvenile herring? Journal of Fish Biology, 66, 1692-1703. https://doi. org/10.1111/j.0022-1112.2005.00716.x
- [8]. Fey, D. P. (2012). Length adjustment of larval and early-juvenile cod (Gadus morhua) after up to 3 years of preservation in alcohol. Journal of Applied Ichthyology, 28(4), 665-666. https://doi.org/10.1111/j.1439-0426.2011.01929.x
- [9]. Fey, D. P. (2015). Size and growth rate differences of larval Baltic sprat Sprattus sprattus collected with bongo and MIK nets. Journal of Fish Biology, 86(1), 355-359. https:// doi.org/10.1111/jfb.12528 PMID:25307421
- [10]. Fey, D. P. (2018). The effect of preserving ichthyoplankton samples in alcohol on the accuracy of data obtained from otolith microstructure examinations. Fisheries Research, 206, 198-201. https://doi.org/10.1016/j.fishres.2018.05.016
- [11]. Fey, D. P., & Linkowski, T. B. (2006). Predicting juvenile Baltic cod (Gadus morhua) age from body and otolith size measurements. ICES Journal of Marine Science, 63(6), 1045-1052. https://doi.org/10.1016/j.icesjms.2006.03.019
- [12]. Folkvord, A. (2005). Comparison of size-at-age of larval Atlantic cod (Gadus morhua) from different populations based on size-and temperature-dependent growth models. Canadian Journal of Fisheries and Aquatic Sciences, 62(5), 1037-1052. https://doi.org/10.1139/f05-008
- [13]. Fonseca, V. F., & Cabral, H. N. (2007). Are fish early growth and condition patterns related to life-history strategies? Reviews in Fish Biology and Fisheries, 17, 545-564. https:// doi.org/10.1007/s11160-007-9054-x
- [14]. Geffen, A. J. (1995). Growth and otolith microstructure of cod (Gadus morhua L.) larvae. Journal of Plankton Research, 17(4), 783-800. https://doi.org/10.1093/plankt/174.783
- [15]. Greszkiewicz, M., Fey, D. P. (2018). Effect of preservation in formalin and alcohol on the growth rate estimates of larval northern pike. North American Journal of Fisheries Management, 38: 601-605. DOI: 10.1002/nafm.10059
- [16]. Hardy, J. D., Jr. (1978). Development of fishes of the Mid-Atlantic Bight. An atlas of egg, larval and juvenile stages. Volume II, Anguillidae through Syngnathidae. Fish and Wildlife Service. U.S. Department of the Interior
- [17]. HELCOM. (2017). Guidelines for monitoring of mesozooplankton.
- [18]. Hinchliffe, C., Pepin, P., Suthers, I. M., & Falster, D. S. (2021). A novel approach for estimating growth and mortality of fish larvae.-. ICES Journal of Marine Science, 78(8), 2684-2699. https://doi.org/10.1093/icesjms/fsab161
- [19]. Hjort, J. (1914). Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapports et procès-verbaux des réunions, International Council for the Exploration of the Sea, 20, 1-228.
- [20]. Horbowa, K., & Fey, D. P. (2013). Atlas of early developmental stages of fish-34 species of the Southern Baltic Sea. Morski Instytut Rybacki-Panstwowy Instytut Badawczy.
- [21]. Houde, (2008). Emerging from Hjort’s Shadow. Fish. Sci. J. Northw. Atl. Fish. Sci. 41. 53-70. https://doi.org/10.2960/J. v41.m634.
- [22]. Hüssy, K., St. John, M. A., & Böttcher, U. (1997). Food resource utilization by juvenile Baltic cod Gadus morhua: A mechanism potentially influencing recruitment success at the demersal juvenile stage? Marine Ecology Progress Series, 155, 199-208. https://doi.org/10.3354/meps155199
- [23]. Hüssy, K., Hinrichsen, H.-H., & Huwer, B. (2012). Hydrographic influence on the spawning habitat suitability of western Baltic cod ( Gadus morhua ). ICES Journal of Marine Science, 69(10), 1736-1743. https://doi.org/10.1093/icesjms/fss136
- [24]. Hüssy, K., Mosegaard, H., Hinrichsen, H.-H., & Böttcher, U. (2003). Using otolith microstructure to analyse growth of juvenile Baltic cod Gadus morhua. Marine Ecology Progress Series, 258, 233-241. https://doi.org/10.3354/meps258233
- [25]. Huwer, B., Clemmesen, C., Grønkjær, P., & Köster, F. W. (2011). Vertical distribution and growth performance of Baltic cod larvae—Field evidence for starvation-induced recruitment regulation during the larval stage? Progress in Oceanography, 91(4), 382-396. https://doi.org/10.1016/j. pocean.2011.04.001
- [26]. Huwer, B., Hinrichsen, H. H., Böttcher, U., Voss, R., & Köster, F. (2014). Characteristics of juvenile survivors reveal spatio-temporal differences in early life stage survival of Baltic cod. Marine Ecology Progress Series, 511, 165-180. https:// doi.org/10.3354/meps10875
- [27]. ICES. (2022). Cod (Gadus morhua) in subdivisions 24-32, eastern Baltic stock (eastern Baltic Sea). In Report of the ICES Advisory Committee, 2022. ICES Advice 2022, cod.27.24-32, https://doi.org/10.17895/ices.advice.19447874
- [28]. ICES. (2023) Baltic Fisheries Assessment Working Group (WGBFAS). ICES Scientific Reports. 5:58. 606 pp. https:// doi.org/10.17895/ices.pub.23123768
- [29]. Jacobsen, S., Gaard, E., Hâtün, H., Steingrund, P., Larsen, K. M. H., Reinert, J., Ölafsdöttir, S. R., Poulsen, M., & Vang, H. B. M. (2019). Environmentally Driven Ecological Fluctuations on the Faroe Shelf Revealed by Fish Juvenile Surveys. Frontiers in Marine Science, 6, 559. https://doi.org/10.3389/ fmars.2019.00559
- [30]. Jacobsen, S., Nielsen, K. K., Kristiansen, R., Grønkjær, P., Gaard, E., & Steingrund, P. (2020). Diet and prey preferences of larval and pelagic juvenile Faroe Plateau cod (Gadus morhua). Marine Biology, 167, 122. https://doi.org/10.1007/S00227-020-03727-5
- [31]. Kamler, E. (1992). Early life history of fish: an energetics approach (4). Springer Science & Business Media. https://doi.org/10.1007/978-94-011-2324-2
- [32]. Köster, F. W., Huwer, B., Hinrichsen, H. H., Neumann, V., Makarchouk, A., Eero, M., Dewitz, B. V., Hüssy, K., Tomkiewicz, J., Margonski, P., Temming, A., Hermann, J.-P., Oesterwind, D., Dierking, J., Kotterba, P., & Plikshs, M. (2017). Eastern Baltic cod recruitment revisited—Dynamics and impacting factors. ICES Journal of Marine Science, 74(1), 3-19. https://doi.org/10.1093/icesjms/fsw172
- [33]. Motoda, S. (1959). Devices of simple plankton apparatus. Memoirs of the Faculty of Fisheries, Hokkaido University, 7, 73-94.
- [34]. Möllmann, C., Kornilovs, G., Fetter, M., & Köster, F. W. (2005). Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES Journal of Marine Science, 62(7), 1270-1280. https://doi.org/10.1016/j.icesjms.2005.04.021
- [35]. Möllmann, C., Müller-Karulis, B., Kornilovs, G., & St John, M. A. (2008). Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: Regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES Journal of Marine Science, 65(3), 302-310. https://doi. org/10.1093/icesjms/fsm197
- [36]. Oeberst, R., & Böttcher, U. (1998). Development of juvenile Baltic cod described with meristic, morphometric and sagitta otolith parameters. ICES Document CM, CC, 15.
- [37]. Otterlei, E., Nyhammer, G., Folkvord, A., & Stefansson, S. O. (1999). Temperature-and size-dependent growth of larval and early juvenile Atlantic cod (Gadus morhua): A comparative study of Norwegian coastal cod and northeast Arctic cod. Canadian Journal of Fisheries and Aquatic Sciences, 56(11), 2099-2111. https://doi. org/10.1139/f99-168
- [38]. Otto, S. A., Diekmann, R., Flinkman, J., Kornilovs, G., & Möllmann, C. (2014). Habitat heterogeneity determines climate impact on zooplankton community structure and dynamics. PLoS One, 9(3), e90875. https://doi.org/10.1371/ journal.pone.0090875 PMID:24614110
- [39]. Otto, S. A., Niiranen, S., Blenckner, T., Tomczak, M. T., Müller-Karulis, B., Rubene, G., & Möllmann, C. (2020). Life Cycle Dynamics of a Key Marine Species Under Multiple Stressors Frontiers in Marine 296, https://www.frontiersin. org/article/10.3389/fmars.2020.00296D0I = 10.3389/ fmars.2020.00296
- [40]. Pinsky, M. L., & Byler, D. (2015). Fishing, fast growth and climate variability increase the risk of collapse Proceedings of the Royal Society. B, Biological sciences, 2015-08-22, Vol.282 (1813), 20151053-20151053
- [41]. Radtke, R. L. (1989). Larval fish age, growth, and body shrinkage: Information available from otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 46(11), 1884-1894. https://doi.org/10.1139/f89-237
- [42]. Radtke, R. L., & Fey, D. P. (1996). Environmental effects on primary increment formation in the otoliths of newly-hatched Arctic charr. Journal of Fish Biology, 48(6), 1238-1255. https://doi.org/10.1006/jfbi.1996.0124
- [43]. Robert, D., Shoji, J., Sirois, P., Takasuka, A., Catalán, I. A., Folkvord, A., Ludsin, S. A., Peck, M. A., Sponaugle, S., Ayón, P. M., Brodeur, R. D., Campbell, E. Y., D’Alessandro, E. K., Dower, J. F., Fortier, L., García, A. G., Huebert, K. B., Hufnagl, M., Ito, S., … Pepin, P. (2023). Life in the fast lane: Revisiting the fast growth—High survival paradigm during the early life stages of fishes. Fish and Fisheries, 24(5), 863-888. https:// doi.org/10.1111/faf.12774
- [44]. Schmidt, J. O., & Hinrichsen, H. H. (2008). Impact of prey field variability on early cod Gadus morhua larval survival: A sensitivity study of a Baltic cod individual-based model. Oceanología, 50(2), 205-220.
- [45]. Spich, K., & Fey, D. P. (2020). Consequences of differences among readers in age estimations of Baltic cod larvae and early juveniles for growth rate and hatch date analysis. Is more experience always better? Fisheries Research, 225, 105500. https://doi.org/10.1016/j.fishres.2020.105500
- [46]. Spich, K., & Fey, D. P. (2022). Using otolith microstructure analysis in studies on the ecology of the early life stages of cod, Gadus morhua L.: A review. Fisheries Research, 250, 106265. https://doi.org/10.1016/j.fishres.2022.106265
- [47]. Steffensen (1980). Daily growth increments observed in otoliths from juvenile East Baltic cod. Dana, 1, 29-37.
- [48]. Suthers, I. M., White, Z., Hinchliffe, C., Falster, D. S., Richardson, A. J., & Everett, J. D. (2022). The mortality/growth ratio of larval fish and the slope of the zooplankton size-spectrum. Fish and Fisheries, 23(3), 750-757. https://doi.org/10.1111/ faf.12633
- [49]. Takasuka, A., Sakai, A., & Aoki, I. (2017). Dynamics of growthbased survival mechanisms in Japanese anchovy (Engraulis japonicus) larvae. Canadian Journal of Fisheries and Aquatic Sciences, 74(6), 812-823. https://doi.org/10.1139/ cjfas-2016-0120
- [50]. Voss, R., Köster, F., & Dickmann, M. (2003). Comparing the feeding habits of co-occurring sprat (Sprattus sprattus) and cod (Gadus morhua) larvae in the Bornholm Basin, Baltic Sea. Fisheries Research, 63(1), 97-111. https://doi. org/10.1016/S0165-7836(02)00282-5
- [51]. Witek, Z., Breuel, G., Wolska-Pys, M., Gruszka, P., Krajewska-Soltys, A., Ejsymont, L., & Sujak, D. (1996). Comparison of different methods of Baltic zooplankton biomass estimations. Proceedings of the XII BMB Sympozjum, Institute of Aquatic Ecology, University of Latvia: 87-92
- [52]. Zuzarte, F., Koster, F. W., Möllmann, C., Voss, R., Grønkjær, P. (1996). Diet composition of cod larvae in the Bornholm Basin. ICES CM 1996/J:19
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6f87c89-210f-40aa-9327-bf55d1fd27b2