Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper summarises the results of laboratory testing of an energy harvesting vibration reduction system based on a magnetorheological (MR) damper whose control circuit incorporates a battery of bipolar electrolytic capacitors (current cut-off circuit). It is designed to reduce the undesired effects in vibration reduction systems of this type, associated with the increasing amplitude of the sprung mass vibration under the excitation inputs whose frequency should exceed the resonance frequency of the entire system. Results have demonstrated that incorporating a current cut-off circuit results in a significant decrease of sprung mass vibration amplitudes when the frequency of acting excitation inputs is higher than the resonance frequency.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
96--100
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
autor
- AGH University of Science and Technology, Mechanical Engineering and Robotics, Department of Process Control, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Mechanical Engineering and Robotics, Department of Process Control, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- 1. Ahamed R., Ferdaus Md. M., Li Y. (2016), Advancement in energy harvesting magneto-rheological fluid damper: A review, KoreaAustralia Rheology Journal, 28(4), 355−379.
- 2. Chen C., Liao W.H. (2012), A self-sensing magnetorheological damper with power generation, Smart Materials and Structures, 21, 025014.
- 3. Choi K.M., Jung H. J., Lee H. J, Cho S.W. (2007), Feasibility study of smart passive control system equipped with electromagnetic induction device, Smart Materials and Structures, 16, 2323-2329.
- 4. Choi Y.T., Werely N.M (2009), Self-powered magnetorhelogical dampers, Journal of Vibration and Acoustics, 131, 44−50.
- 5. Jastrzębski Ł., Sapiński B. (2016), Electrical interface for a selfpowered MR damper-based vibration reduction system, Acta Mechanica et Automatica, 10(3), 165−172.
- 6. Sapiński B., Snamina J., Jastrzębski Ł., Staśkiewicz A., (2011), Laboratory stand for testing of self-powered vibration reduction systems, Journal of Theoretical and Applied Mechanics, 49(4), 1169– 1181.
- 7. Sapiński B. (2008), An experimental electromagnetic induction device for a magnetorheological damper, Journal of Theoretical and Applied Mechanics, 46(4), 933−947.
- 8. Sapiński B. (2010), Vibration power generator for a linear MR damper, Smart Materials and Structures, 19, 105012.
- 9. Sapiński B. (2011), Experimental study of a self-powered and sensing MR damper-based vibration control system, Smart Materials and Structures, 20, 105007.
- 10. Sapiński B., Rosół M., Jastrzębski Ł. (2011), Charakterystyki semiaktywnego układu redukcji drgań z odzyskiem energii, Pomiary, Automatyka, Kontrola, 57(5), 502−506.
- 11. Sapiński B., Rosół M., Węgrzynowski M. (2016), Investigation of an energy harvesting MR damper in a vibration control system, Smart Materials and Structures, 25, 125017.
- 12. Wang D.H., Bai X.X. (2013), A magnetorheological damper with an integrated self-powered displacement sensor, Smart Materials and Structures, 22, 075001.
- 13. Wang D.H., Bai X.X., Liao W.H. (2009), Principle, design and modeling of an integrated relative displacement magnetorheological damper based on electromagnetic induction, Smart Materials and Structures, 18, 095025.
- 14. Xinchun G., Yonghu H., Yi R., Hui L., Jinping O. (2015), A novel self-powered MR damper: Theoretical and experimental analysis, Smart Materials and Structures, 24, 105033. 15. Zhu S.Y., Shen W.A., Xu Y.L., Lee W.C. (2012), Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing, Engineering Structures, 34, 198−212.
Uwagi
This work is supported by AGH University of Science and Technology under research program No. 15.11.130.431.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6f50962-f3e7-40c8-9da5-f8ba65cd2b03