PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hybrid PAPR reduction schemes for different OFDM-based VLC systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Orthogonal frequency division multiplexing has been widely used in many radio frequency wireless communication standards as a preferable multicarrier modulation scheme. The modulated signals of a conventional orthogonal frequency division multiplexing system are complex and bipolar. In intensity-modulated direct detection optical wireless communications, transmitted signals should be real and unipolar due to non-coherent emissions of an optical light emitting diode. In this paper, different hybrid optical systems have been proposed to satisfy real and unipolar signals. Peak-to-average power ratio is one of the biggest challenges for orthogonal frequency division multiplexing-based visible light communications. They are based on a combination of non-linear companding techniques with spreading or precoding techniques. Simulation evaluation is performed under direct current-biased optical orthogonal frequency division multiplexing, asymmetrically clipped optical orthogonal frequency division multiplexing, and Flip-orthogonal frequency division multiplexing systems in terms of peak-to-average power ratio, bit error rate, and spectral efficiency. The proposed schemes are investigated to determine a scheme with a low peak-to-average power ratio and an acceptable bit error rate. MATLABTM software has been successfully used to show the validity of the proposed schemes.
Rocznik
Strony
art. no. e141951
Opis fizyczny
Bibliogr. 33 poz., rys., wykr., tab.
Twórcy
  • Department of Electrical Engineering, Higher Technological Institute, 10th of Ramadan City, Sharqia, Egypt
  • Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61519, Egypt
  • Electrical and Computer Engineering Department, Effat University, Jeddah, Kingdom of Saudi Arabia
  • Department of Telecommunications Engineering, Egyptian Russian University, Badr City, Egypt
Bibliografia
  • [1] El-Ganiny, M. Y., Khalaf, A. A. M., Hussein, A. I. & Hamed, H. F. A. A proposed preamble channel estimation scheme for flip FBMC-based indoor VLC systems. Opto-Electron. Rev. 30, e140859 (2022). https://doi.org/10.24425/opelre.2022.140859
  • [2] Mohammed, N. A., Elnabawy, M. M. & Khalaf, A. A. M. PAPR reduction using a combination between precoding andnon-linear com-panding techniques foraco-ofdm-based vlc systems. Opto-Electron. Rev. 29, 59-70 (2021). https://doi.org/10.24425/opelre.2021.135829
  • [3] Yu, T. C. et al. Visible light communication system technology review: Devices, architectures, and applications. Crystals 11, 1098 (2021). https://doi.org/10.3390/cryst11091098
  • [4] Lowery, A. J. Spectrally efficient optical orthogonal frequency division multiplexing. Phil. Trans. R. Soc. A. 378, 20190180 (2020). https://doi.org/10.1098/rsta.2019.0180
  • [5] Chen, R. et al. Visible Light Communication Using DC-Biased Optical Filter Bank Multi-Carrier Modulation. in 2018 Global LIFI Congress (GLC) 1-6 (2018). https://doi.org/10.23919/GLC.2018.8319094
  • [6] Sharifi, A. A. PAPR reduction of optical OFDM signals in visible communications. light Express ICT 5, 202-205 (2019). https://doi.org/10.1016/j.icte.2019.01.001
  • [7] Shaheen, I. A., Zekry, A., Newagy, F. & Ibrahim, R. Performance evaluation of PAPR reduction in FBMC system using nonlinear transform companding. Express ICT 5, 41-46 (2018). https://doi.org/10.1016/j.icte.2018.01.017
  • [8] Mounir, M., Tarrad, I. F. & Youssef, M. I. Performance evaluation of different precoding matrices for PAPR reduction in OFDM systems. Internet Technol. Lett. 1, e70 (2018). https://doi.org/10.1002/itl2.70
  • [9] Ahmad, R. & Srivastava, A. PAPR reduction of OFDM signal through DFT precoding and GMSK pulse shaping in indoor VLC. IEEE Access 8, 122092–122103 (2020). https://doi.org/10.1109/ACCESS.2020.3006247
  • [10] Darwesh, L. & Kopeika, N. Improved performance in the detection of aco-ofdm modulated signals using deep learning modules. Appl. Sci. 10, 8380 (2020). https://doi.org/10.3390/app10238380
  • [11] Offiong, F. B., Sinanović, S. & Popoola, W. O. Pilot-aided frame synchronization in optical OFDM systems. Appl. Sci. 10, 4034 (2020). https://doi.org/10.3390/app10114034
  • [12] Freag, H., Hassan, E. S., El-Dolil, S. A. & Dessouky, M. I. New hybrid PAPR reduction techniques for OFDM-based visible light communication systems. J. Opt. Commun. 39, 427-435 (2018). https://doi.org/10.1515/joc-2017-0002
  • [13] Jiang, T. et al. Investigation of DC-Biased optical OFDM with precoding matrix for visible light communications: Theory, simulations, and experiments. IEEE Photon. J. 10, 1-6 (2018). https://doi.org/10.1109/JPHOT.2018.2866952
  • [14] Wang, Z. & Chen, S. Grouped DFT precoding for PAPR reduction in visible light OFDM systems. Int. J. Electron. Commun. Comput. Eng. 6, 710–713 (2015). https://ijecce.org/administrator/componen ts/com_jresearch/files/publications/IJECCE_3674_Final.pdf
  • [15] Hesham, H. & Ismail, T. Hybrid NOMA-based ACO-FBMC/OQAM for next-generation indoor optical wireless communications using LiFi technology. Opt. Quant. Electron. 54, 201 (2022). https://doi.org/10.1007/s11082-022-03559-1
  • [16] Fernando, N., Hong, Y. & Viterbo, E. Flip-OFDM For Optical Wireless Communications. in 2011 IEEE Inormation Theory Workshop 5–9 (2011). https://doi.org/10.1109/ITW.2011.6089566
  • [17] Bahaaelden, M. S., Ortega, B., Perez-Jimenez, R. & Renfors, M. Efficiency analysis of a truncated flip-FBMC in burst optical transmission. IEEE Access 9, 100558-100569 (2021). https://doi.org/10.1109/ACCESS.2021.3096660
  • [18] Baig, I., Ul Hasan, N., Zghaibeh, M., Khan, I. U. & Saand, A. S. A DST Precoding Based Uplink NOMA Scheme for PAPR Reduction in 5G Wireless Network. in 2017 7th Int. Conference on Modelling Simulation, Applied Optimization (ICMSAO) 1–4 (2017). https://doi.org/10.1109/ICMSAO.2017.7934861
  • [19] Bardale, R. S. & Yerigiri, V. V. Analysis of DHT-spread ACO-OFDM scheme using binary-psk modulation for PAPR reduction. Int. J. Electron. Commun. Comput. Eng. 12, 22-26 (2017). https://doi.org/10.9790/2834-1206022226
  • [20] El-Ganiny, M. Y., Khalaf, A. A. M., Hussein, A. I. & Hamed, H. F. A. A preamble based channel estimation methods for FBMC waveform: A comparative study. Procedia Comput. Sci. 182, 63-70 (2021). https://doi.org/10.1016/j.procs.2021.02.009
  • [21] Saju, S. C. & George, A. J. Comparison of ACO-OFDM and DCO-OFDM in IM / DD Systems. Int. J. Eng. Res. Technol. 4, 1315–1318 (2015). https://www.ijert.org/research/comparison-of-aco-ofdm-and-dco-ofdm-in-imdd-systems-IJERTV4IS041422.pdf
  • [22] Kumar, M. & Purohit, M. Comparative Study of FLIP-OFDM and ACO-OFDM for Unipolar Communication System. Int. J. Innov. Sci. Technol. 1, 144–148 (2014). https://www.ijiset.com/v1s2/IJISET_V1_I2_25.pdf
  • [23] Shaheen, I. A., Zekry, A., Newagy, F. & Reem, I. Combined DHT precoding and a-law companding for PAPR reduction in FBMC / OQAM signals. Int. J. Comput. Academic Res. 6, 31–39 (2017). http://www.meacse.org/ijcar/archives/116.pdf
  • [24] Tsonev, D. & Haas, H. Avoiding Spectral Efficiency Loss in Unipolar OFDM for Optical Wireless Communication. in 2014 IEEE International Conference on Communications (ICC) 3336-3341 (2014). https://doi/org/10.1109/ICC.2014.6883836
  • [25] El-Ganiny, M. Y., ElAttar, H. M., Dahab, M. A. A. & Elgarf, T. A. Improved Coding Gain of Clipped OFDM Signal Using Avalanche Effect of AES Block Cipher. in 2017 IEEE Pacific Rim Conference on Communicationm Compututers and Signal Processing (PACRIM) 1-6 (2017). https://doi.org/10.1109/PACRIM.2017.8121910
  • [26] Feng, S., Feng, H., Zhou, Y. & Li, B. Low-complexity hybrid optical OFDM with high spectrum efficiency for dimming compatible VLC system. Appl. Sci. 9, 3666 (2019). https://doi.org/10.3390/app9183666
  • [27] Acolatse, K., Bar-Ness, Y. & Wilson, S. K. Novel techniques of single-carrier frequency-domain equalization for optical wireless communications. EURASIP J. Adv. Signal Process. 2011, 393768 (2011). https://doi.org/10.1155/2011/393768
  • [28] Pradhan, J., Kappala, V. K., Das, S. & Holey, P. Performance analysis of ACO-OFDM NOMA for VLC communication. Opt. Quant. Electron. 54, 531 (2022). https://doi.org/10.1007/s11082-022-03939-7
  • [29] Ibrahim, A., Prat, J. & Ismail, T. Asymmetrical clipping optical filter bank multi-carrier modulation scheme. Opt. Quant. Electron. 53, (2021). https://doi.org/10.21203/rs.3.rs-248482/v1
  • [30] Zhou, J. & Zhang, W. Information Rates of Unipolar OFDM Schemes in Gaussian Optical Intensity Channel. in 2017 9th Int. Conference on Wirelss Communication and Signal Processing (WCSP) 1-7 (2017). https://doi.org/10.1109/WCSP.2017.8170888
  • [31] Ahmed, F. et al. DFT-spread OFDM with quadrature index modulation for practical VLC systems. Opt. Express 29, 33027–33036 (2021). https://doi.org/10.1364/OE.441650
  • [32] Mhatre, K. & Khot, U. P. Efficient selective mapping PAPR reduction technique. Procedia Comput. Sci. 45, 620–627 (2015). https://doi.org/10.1016/j.procs.2015.03.117
  • [33] Abd El-Rahman, A. F. et al. Companding techniques for SC-FDMA and sensor network applications. Int. J. Electron. Lett. 8, 241-255 (2020). https://doi.org/10.1080/21681724.2019.1600051
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6f4b76b-a421-4906-965f-32b0748597a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.