Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The efficiency of exhaust heat recovery in typical integrated energy plant on the base of reciprocating gas engines with absorption lithium-bromide chiller for combined electricity, heat and refrigeration supply of the factory Sаndorа-PepsiCо Ukraine is analyzed. The reserves of decreasing the heat exhausted into atmosphere are revealed on the base of monitoring data and their realization through conversion into refrigeration for cooling the engine cyclic air is proposed. Some scheme decisions of improved and innovative exhaust heat recovery systems providing deep heat conversing into refrigeration for engine cyclic air cooling are developeded.
Wydawca
Rocznik
Tom
Strony
157--165
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
- Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
autor
- Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
autor
- Gdańsk University of Technology 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
autor
- Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
autor
- Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
autor
- Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
Bibliografia
- [1] Canova A., Cavallero C., Freschi F., Giaccone L., Repetto M., Tartaglia M., Optimal energy management, IEEE Industry Applications Magazine, Vol. 15, 2009, pp. 62-65.
- [2] Ortiga J., Bruno J.C., Coronas A., Operational optimization of a complex trigeneration system connected to a district heating and cooling network, Applied Thermal Engineering, Vol. 50, 2013, pp. 1536-1542.
- [3] Cogeneration & Trigeneration - How to produce energy efficiently. A practical guide for experts in emerging and developing economies, Zellner S., Burgtorf J., Kraft-Schäfer D. (eds.), Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 2016, p. 144.
- [4] Gluesenkamp K., Hwang Y., Radermacher R., High efficiency micro trigeneration systems, Applied Thermal Engineering, Vol. 50, 2013, р. 6.
- [5] CIMAC position paper gas engine aftertreatment systems by CIMAC WG 17, Gas Engines, May 2017, https://www.cimac.com/cms/upload/Publication_Press/WG_Publications/CIMAC_WG17_2017_Aug_Position_Paper_Gas_Engine_Aftertreatment_Systems.pdf.
- [6] Jenbacher, http://www.intma.ru/energetica/power_stations/thermal_ps_trigeneration_ru.html.
- [7] Rouse G., Czachorski M., Bishop P., Patel J., GTI Integrated Energy System for Buildings. Modular System Prototype, GTI Project report 15357/65118: Gas Technology Institute (GTI), January 2006, p. 495.
- [8] Elsenbruch Т., Jenbacher gas engines a variety of efficient applications, Bucureşti, 28 October 2010, p. 73.
- [9] Radchenko A., Mikielewicz D., Forduy S., Radchenko M., Zubarev A., Monitoring the fuel efficiency of gas engine in integrated energy system [in:] Nechyporuk M. et al. (eds.), ICTM 2019, AISC, Springer, Vol. 1113, Cham 2020, pp. 361-370.
- [10] Forduy S., Radchenko A., Kuczynski W., Zubarev A., Konovalov D., Enhancing the fuel efficiency of gas engines in integrated energy system by chilling cyclic air [in:] Tonkonogyi V. et al. (eds.), Grabchenko’s ICAMP, InterPartner-2019, LNME, Springer, Cham 2020, pp. 500-509.
- [11] Trushliakov E., Radchenko A., Forduy S., Zubarev A., Hrych A., Increasing the operation efficiency of air conditioning system for integrated power plant on the base of its monitoring [in:] Nechyporuk M. et al. (eds.), (ICTM 2019), AISC (2020), Springer, Vol. 1113, Cham 2020, pp. 351-360.
- [12] Radchenko A., Scurtu I.-C., Radchenko M., Forduy S., Zubarev A., Monitoring the efficiency of cooling air at the inlet of gas engine in integrated energy system, Thermal Science 2020 OnLine-First Issue 00, pp. 344-344, https://doi.org/10.2298/TSCI200711344R.
- [13] Radchenko A., Stachel A., Forduy S., Portnoi B., Rizun O., Analysis of the efficiency of engine inlet air chilling unit with cooling towers [in:] Ivanov V. et al. (eds.), ADSM III (DSMIE 2020), LNME, Springer, Cham 2020, pp. 322-331.
- [14] Radchenko M., Portnoi B., Kantor S., Forduy S., Konovalov D., Rational thermal loading the engine inlet air chilling complex with cooling towers [in:] Tonkonogyi V. et al. (eds.), AMP II, InterPartner 2020, LNME, Springer, Cham 2021, pp. 724-733.
- [15] Konovalov D., Kobalava H., Radchenko M., Scurtu I.C., Radchenko R., Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling [in:] TE-RE-RD 2020, E3S Web of Conferences, Vol. 180, 2020, No. 01012.
- [16] Konovalov D., Trushliakov E., Radchenko M., Kobalava G., Maksymov V., Research of the aerothermopresor cooling system of charge air of a marine internal combustion engine under variable climatic conditions of operation [in:] Tonkonogyi V. et al. (eds.), ICAMP, InterPartner-2019, LNME, Springer, Cham 2020, pp. 520-529.
- [17] Radchenko R., Kornienko V., Pyrysunko M., Bogdanov M., Andreev A., Enhancing the efficiency of marine diesel engine by deep waste heat recovery on the base of its simulation along the route line [in:] Nechyporuk M. et al. (eds.), ICTME, AISC, Springer, Vol. 1113, Cham 2020, pp. 337-350.
- [18] Radchenko R., Pyrysunko M., Radchenko A., Andreev A., Kornienko V., Ship engine intake air cooling by ejector chiller using recirculation gas heat [in:] Tonkonogyi V. et al. (eds.), AMP, InterPartner-2020, LNME, Springer, Cham 2021, pp. 734-743.
- [19] Butrymowicz D., Gagan J., Śmierciew K., Łukaszuk M., Dudar A., Pawluczuk A., Łapiński A., Kuryłowic A., Investigations of prototype ejection refrigeration system driven by low grade heat, HTRSE-2018, E3S Web of Conferences 2018, Vol. 70, p. 7.
- [20] Smierciew K., Gagan J., Butrymowicz D., Karwacki J., Experimental investigations of solar driven ejector air-conditioning system, Energy and Buildings, Vol. 80, 2014, pp. 260-267.
- [21] Kornienko V., Radchenko M., Radchenko R., Konovalov D., Andreev A., Pyrysunko M., Improving the efficiency of heat recovery circuits of cogeneration plants with combustion of water-fuel emulsions, Thermal Science, Vol. 25, Issue 1, Part В, 2021, pp. 791-800.
- [22] Kornienko V., Radchenko R., Konovalov D., Andreev A., Pyrysunko M., Characteristics of the rotary cup atomizer used as afterburning Installation in exhaust gas boiler flue [in:] Ivanov V. et al. (eds.), ADSM III(DSMIE 2020), LNME, Springer, Cham 2020, pp. 302-311.
- [23] Kornienko V., Radchenko R., Stachel A., Andreev A., Pyrysunko M., Correlations for pollution on condensing surfaces of exhaust gas boilers with water-fuel emulsion combustion [in:] Tonkonogyi V. et al. (eds.), AMP, InterPartner-2019, LNME, Springer, Cham 2020, pp. 530-539.
- [24] Kornienko V., Radchenko R., Bohdal Ł., Kukiełka L., Legutko S., Investigation of condensing heating surfaces with reduced corrosion of boilers with water-fuel emulsion combustion [in:] Nechyporuk M. et al. (eds.), ICTM 2020, LNNS, Springer, Vol. 188, Cham 2021, pp. 300-309.
- [25] Dąbrowski P., Klugmann M., Mikielewicz D., Selected studies of flow maldistribution in a minichannel plate heat exchanger, Archives of Thermodynamics, Vol. 38, 2017, pp. 135-148.
- [26] Kumar R., Singh G., Mikielewicz D., A new approach for the mitigating of Flow Maldistribution in Parallel Microchannel Heat Sink, Journal of Heat Transfer, Vol. 140, 2018, pp. 72401-72410.
- [27] Kumar R., Singh G., Mikielewicz D., Numerical study on mitigation of flow maldistribution in parallel microchannel heat sink: channels variable width versus variable height approach, Journal of Electronic Packaging, Vol. 141, 2019, pp. 21009-21011.
- [28] Dąbrowski P., Klugmann M., Mikielewicz D., Channel blockage and flow maldistribution during unsteady flow in a model microchannel plate heat exchanger, Journal of Applied Fluid Mechanics, Vol. 12, 2019, pp. 1023-1035.
- [29] Mikielewicz D., Klugmann M., Wajs J., Flow boiling intensification in minichannels by means of mechanical flow turbulising inserts, International Journal of Thermal Sciences, Vol. 65, 2013, pp. 79-91.
- [30] Bohdal T., Kuczynski W., Boiling of R404A refrigeration medium under the conditions of periodically generated disturbances, Heat Transf. Eng., Vol. 32, 2011, pp. 359-368, doi:10.1080/01457632.2010.483851.
- [31] Kuczyński W., Charun H., Experimental investigations into the impact of the void fraction on the condensation characteristics of R134a refrigerant in minichannels under conditions of periodic instability, Arch. Thermodyn., Vol. 32, 2011, pp. 21-37, doi:10.2478/v10173.
- [32] Kuczyski W., Charun H., Bohdal T., Kuczynski W., Influence of hydrodynamic instability on the heat transfer coefficient during condensation of R134a and R404A refrigerants in pipe minichannels, Int. J. Heat Mass Transf., Vol. 55, 2012, pp. 1083-1094, doi:10.1016/j.ijheatmasstransfer.2011.10.002.
- [33] Trushliakov E., Radchenko M., Bohdal T., Radchenko R., Kantor S., An innovative air conditioning system for changeable heat loads [in:] Tonkonogyi V. et al. (eds.), ICAMP, InterPartner-2019, LNME, Springer, Cham 2020, pp. 616-625.
- [34] Radchenko A., Trushliakov E., Kosowski K., Mikielewicz D., Radchenko M., Innovative turbine intake air cooling systems and their rational designing, Energies, 2020, Vol. 13, Issue 23, No. 6201.
- [35] Radchenko R., Radchenko N., Tsoy A., Forduy S., Zybarev A., Kalinichenko I., Utilizing the heat of gas module by an absorption lithium-bromide chiller with an ejector booster stage, AIP Conference Proceedings, Vol. 2285, 2020, No. 030084.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6f4aae8-4b68-4643-8401-c53f8a218df2