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Abstract. We consider a generalization of the classical risk model when the premium inten-
sity depends on the current surplus of an insurance company. All surplus is invested in the
risky asset, the price of which follows a geometric Brownian motion. We get an exponential
bound for the infinite-horizon ruin probability. To this end, we allow the surplus process to
explode and investigate the question concerning the probability of explosion of the surplus
process between claim arrivals.
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1. INTRODUCTION

Since Lundberg introduced the collective risk model in 1903, the estimation of the ruin
probability has been one of the central directions for investigations in risk theory. It is
well known that in the Cramér-Lundberg model, which is also called the classical risk
model, the infinite-horizon ruin probability decreases exponentially with the initial
surplus if the claim sizes have exponential moments and the net profit condition holds.
Results concerning bounds and asymptotics for the ruin probability were also obtained
for different generalizations of the classical risk model under various assumptions (see,
e.g., [2, 7, 20] and the references given there).

Risk models that allow the insurance company to invest are of great interest.
The fact that risky investments can be dangerous was first justified mathematically
by Kalashnikov and Norberg [12]. They modelled the basic surplus process due to
insurance activity and the price of the risky asset by Lévy processes and obtained
upper and lower power bounds for the ruin probability when the initial surplus is large
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enough. Later, Paulsen [18] and Yuen, Wang, Wu [22] considered some generalizations
of these results.

Frolova, Kabanov and Pergamenshchikov [5] used the bounds obtained in [12] to
show that the ruin occurs with probability 1 in the classical risk model if all surplus
is invested in the risky asset, the price of which is modelled by a geometric Brownian
motion, and some additional conditions for parameters of the geometric Brownian
motion hold. They also showed that if these conditions are not fulfilled, a power
asymptotic is true for the ruin probability when the claim sizes are exponentially
distributed. The power asymptotic was got by Cai and Xu [4] in the case where the
classical risk process is perturbed by a Brownian motion. Moreover, Pergamenshchikov
and Zeitouny [19] considered the risk model where the premium intensity is a bounded
nonnegative random function and generalized results of [5].

On the other hand, numerous results indicate that risky investments can be used
to improve the solvency of the insurance company. For example, Gaier, Grandits and
Schachermayer [6] considered the classical risk model under the additional assump-
tions that the company is allowed to borrow and invest in the risky asset, the price
of which follows a geometric Brownian motion. They obtained an upper exponential
bound for the ruin probability when the claim sizes have exponential moments and
a fixed quantity, which is independent of the current surplus, is invested in the risky
asset. It appears that this bound is better then the classical one. For an exponential
bound in a model with risky investments see also, for instance, [16].

Numerous investigations are devoted to solving optimal investment problems from
the viewpoint of the infinite-horizon ruin probability minimization. For instance, Hipp
and Plum [9], Liu and Yang [15], Azcue and Muler [3] considered the optimal invest-
ment problem in the classical risk model when the company is allowed to borrow.
Asymptotics for the ruin probability under optimal strategies were obtained by Hipp
and Schmidli [10], Grandits [8], Schmidli [21] for different assumptions about claim
sizes.

We consider a generalization of the classical risk model when the premium intensity
depends on the current surplus of the insurance company, which is invested in the
risky asset. Our main aim is to show that if the premium intensity grows rapidly with
increasing surplus, then an exponential bound for the ruin probability holds under
certain conditions in spite of the fact that all surplus is invested in the risky asset.
To this end, we allow the surplus process to explode. To be more precise, we let the
premium intensity be a quadratic function. In addition, we investigate the question
concerning the probability of explosion of the surplus process between claim arrivals
in detail.

Let (Ω,F,P) be a probability space satisfying the usual conditions and all the
objects be defined on it. We assume that the insurance company has a nonnegative
initial surplus x and denote by Xt(x) its surplus at time t ≥ 0. For simplicity of
notation, we writeXt instead ofXt(x) when no confusion can arise. Let c : R→ R+\{0}
be a measurable function such that c(u) = c(0) for all u < 0 and c(Xt) be a premium
intensity that depends on the surplus at time t.
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Next, we suppose that the claim sizes form a sequence (Yi)i≥1 of nonnegative i.i.d.
random variables with finite expectations µ. We denote by τi the time when the ith
claim arrives. For convenience we set τ0 = 0.

Let h : R+ → R+ be the shifted moment generating function of Yi such that
h(0) = 0, i.e.

h(r) = E
[
erYi

]
− 1.

Wemake the following classical assumption concerning h(r): there exists r∞ ∈ (0,+∞]
such that h(r) < +∞ for all r ∈ [0, r∞) and limr↑r∞ h(r) = +∞ (see [7, p. 2]). It is
easily seen that h(r) is increasing, convex, and continuous on [0, r∞).

The number of claims on the time interval [0, t] is a Poisson process (Nt)t≥0

with constant intensity λ > 0. Thus, the total claims on [0, t] equal
∑Nt
i=1 Yi. We set∑0

i=1 Yi = 0 if Nt = 0.
In addition, we assume that all surplus is invested in the risky asset, the price of

which equals St at time t. We model the process (St)t≥0 by a geometric Brownian
motion. Thus,

dSt = St(a dt+ b dWt), (1.1)

where a ∈ R, b > 0, and (Wt)t≥0 is a standard Brownian motion. We suppose that
the random variables (Yi)i≥1 and the processes (Nt)t≥0 and (Wt)t≥0 are independent.

Let (Ft)t≥0 be a filtration generated by (Yi)i≥1, (Nt)t≥0, and (Wt)t≥0, i.e.

Ft = σ
(
(Ns)0≤s≤t, (Ws)0≤s≤t, Y1, Y2, . . . , YNt

)
.

Under the above assumptions, the surplus process (Xt)t≥0 follows the equation

Xt = x+

t∫

0

c(Xs) ds+

t∫

0

Xs

Ss
dSs −

Nt∑

i=1

Yi, t ≥ 0. (1.2)

Substituting (1.1) into (1.2) yields

Xt = x+

t∫

0

c(Xs) ds+ a

t∫

0

Xs ds+ b

t∫

0

Xs dWs −
Nt∑

i=1

Yi, t ≥ 0. (1.3)

The ruin time is defined as τ(x) = inf{t ≥ 0: Xt(x) < 0}. We suppose that τ(x) =
∞ if Xt(x) ≥ 0 for all t ≥ 0. To simplify notation, we let τ stand for τ(x). The cor-
responding infinite-horizon ruin probability is given by ψ(x) = P

[
inft≥0Xt(x) < 0

]
,

which is equivalent to ψ(x) = P[τ(x) <∞].
The rest of the paper is organized in the following way. Section 2 deals with

the detailed investigation of the question concerning the probability of explosion of
the risk process between claim arrivals. In Section 3 we formulate and prove the
existence and uniqueness theorem for stochastic differential equations that describe
the surplus process. In Section 4 we establish the supermartingale property for an
auxiliary exponential process. This property allows us to get an exponential bound
for the ruin probability under certain conditions. Finally, in Section 5 we consider the
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case where the premium intensity is a quadratic function and obtain an exponential
bound for the ruin probability. In addition, Appendices 6 and 7 have some lemmas
and theorems, which are used in Section 2.

2. AUXILIARY RESULTS

Consider now the following stochastic differential equation

Xt = x+

t∫

0

p(Xs) ds+ b

t∫

0

Xs dWs, t ≥ 0, (2.1)

where x > 0, b > 0, (Wt)t≥0 is a standard Brownian motion, p : R → R+ is a
locally Lipschitz continuous function such that p(u) is strictly increasing on R+ and
p(u) = p(0) for all u < 0.

Equation (2.1) describes the surplus process between two successive jumps of
(Nt)t≥0 up to the first exit time of (Xt)t≥0 from [0,+∞) in the model considered above
provided that one puts the corresponding restrictions on c(u), sets p(u) = c(u) + au
for u ≥ 0, and takes the surplus at time of the last jump of (Nt)t≥0 instead of x.

First, we give some results which show that (Xt)t≥0 goes to +∞ either with
probability 1 or with positive probability, which is less then 1 under certain conditions.

Let t∗ be a possible explosion time of (Xt)t≥0, i.e.

t∗ = inf{t ≥ 0: Xt /∈ (−∞,+∞)}.

Moreover, we denote by t∗(0,+∞) the first exit time from (0,+∞) for (Xt)t≥0, i.e.

t∗(0,+∞) = inf{t ≥ 0: Xt /∈ (0,+∞)}.

By Theorem 7.1, equation (2.1) has a unique strong solution up to the explosion
time t∗. Note that here and subsequently, we imply pathwise uniqueness of solutions.

For x > 0, we define

I1 =

+∞∫

x

exp



−

2

b2

v∫

x

p(u)

u2
du



 dv and I2 = −

x∫

0

exp





2

b2

x∫

v

p(u)

u2
du



 dv. (2.2)

Proposition 2.1. If p(0) > 0 and

lim sup
v→+∞


(1 + ε) ln v − 2

b2

v∫

x

p(u)

u2
du


 < +∞ for some ε > 0, (2.3)

then
P
[

limt↑t∗
(0,+∞)

Xt = +∞
]

= 1.
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Proof. Note that in this case I1 < +∞ and I2 = −∞ by Lemmas 6.1 and 6.2. Thus,
the assertion of the proposition follows immediately from Theorem 7.2.

Remark 2.2. If p(0) = 0, then I2 may be finite. By Theorem 7.2, if I1 < +∞ and
I2 > −∞, then limt↑t∗

(0,+∞)
Xt exists a.s.,

0 < P
[

limt↑t∗
(0,+∞)

Xt = +∞
]
< 1,

and
P
[

limt↑t∗
(0,+∞)

Xt = 0
]

= 1− P
[

limt↑t∗
(0,+∞)

Xt = +∞
]
.

Remark 2.3. Proposition 2.1 does not give us whether the exit time t∗(0,+∞) is
finite. It is well known that Feller’s test for explosions (see, e.g., Theorem 5.29 in
[13, p. 348] and [14]) gives precise conditions for whether or not a one-dimensional
diffusion process explodes in finite time. This test is very useful when one wants to
show that a diffusion process does not explode in finite time (see, e.g., [17]), but it
does not solve our problem.

We now give a few examples.

Example 2.4. Let

p(u) =

{
p1u+ p0 if u ≥ 0,

p0 if u < 0.

The function p(u) has the asserted properties provided that p0 ≥ 0 and p1 > 0.
Since

I1 =

+∞∫

x

exp



−

2

b2

v∫

x

p1u+ p0

u2
du



 dv =

+∞∫

x

(x
v

)2p1/b
2

· exp

{
2p0

b2

(
1

v
− 1

x

)}
dv,

we have I1 = +∞ for 2p1 ≤ b2, and I1 < +∞ for 2p1 > b2.
We first consider the case p0 > 0. From Theorem 7.2 and Lemma 6.2 we conclude

that
P
[
t∗(0,+∞) =∞

]
= 1 if 2p1 ≤ b2,

and
P
[

limt↑t∗
(0,+∞)

Xt = +∞
]

= 1 if 2p1 > b2.

Consider now the case p0 = 0. Since

I2 = −
x∫

0

exp





2

b2

x∫

v

p1u

u2
du



 dv = −

x∫

0

(x
v

)2p1/b
2

dv,

we get I2 > −∞ for 2p1 < b2, and I2 = −∞ for 2p1 ≥ b2. Theorem 7.2 yields
P
[
limt↑t∗

(0,+∞)
Xt = 0

]
= 1 if 2p1 < b2, P

[
t∗(0,+∞) = ∞

]
= 1 if 2p1 = b2, and

P
[
limt↑t∗

(0,+∞)
Xt = +∞

]
= 1 if 2p1 > b2.
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Example 2.5. Let

p(u) =

{
p1(u+ p2)α if u ≥ 0,

p1p
α
2 if u < 0.

We put the following restrictions on the parameters of p(u): α > 1, p1 > 0, and p2 ≥ 0.
Since

lim sup
v→+∞


(1 + ε) ln v − 2

b2

v∫

x

p1(u+ p2)α

u2
du




≤ lim sup
v→+∞


(1 + ε) ln v − 2p1

b2

v∫

x

uα−2 du




= lim
v→+∞

(
(1 + ε) ln v − 2p1

(
vα−1 − xα−1

)

b2(α− 1)

)
= −∞

for all ε > 0, Lemma 6.1 gives I1 < +∞.
If p2 > 0, then P

[
limt↑t∗

(0,+∞)
Xt = +∞

]
= 1 by Proposition 2.1.

For p2 = 0, we have

I2 = −
x∫

0

exp





2p1

b2

v∫

x

uα−2 du



 dv = −

x∫

0

exp

{
2p1

(
vα−1 − xα−1

)

b2(α− 1)

}
dv > −∞.

Hence, in this case limt↑t∗
(0,+∞)

Xt exists a.s.,

0 < P
[

limt↑t∗
(0,+∞)

Xt = +∞
]
< 1,

and
P
[

limt↑t∗
(0,+∞)

Xt = 0
]

= 1− P
[

limt↑t∗
(0,+∞)

Xt = +∞
]

by Theorem 7.2.

Example 2.6. Let

p(u) =

{
p2u

2 + p1u+ p0 if u ≥ 0,

p0 if u < 0.
(2.4)

If p0 ≥ 0, p1 ≥ 0, and p2 > 0, then p(u) has all the properties required.
For all ε > 0, we have

lim sup
v→+∞


(1 + ε) ln v − 2

b2

v∫

x

p2u
2 + p1u+ p0

u2
du




≤ lim sup
v→+∞


(1 + ε) ln v − 2

b2

v∫

x

p2 du




= lim
v→+∞

(
(1 + ε) ln v − 2p2(v − x)

b2

)
= −∞.
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Hence, I1 < +∞ by Lemma 6.1.
If p0 > 0, then P

[
limt↑t∗

(0,+∞)
Xt = +∞

]
= 1 by Proposition 2.1.

For p0 = 0, we get

I2 = −
x∫

0

exp





2

b2

x∫

v

p2u
2 + p1u

u2
du



 dv = −

x∫

0

(x
v

)2p1/b
2

· exp

{
2p2(x− v)

b2

}
dv.

This gives I2 > −∞ for 2p1 < b2, and I2 = −∞ for 2p1 ≥ b2. Consequently, if
2p1 < b2, then limt↑t∗

(0,+∞)
Xt exists a.s.,

0 < P
[

limt↑t∗
(0,+∞)

Xt = +∞
]
< 1,

and
P
[

limt↑t∗
(0,+∞)

Xt = 0
]

= 1− P
[

limt↑t∗
(0,+∞)

Xt = +∞
]
;

if 2p1 ≥ b2, then
P
[

limt↑t∗
(0,+∞)

Xt = +∞
]

= 1.

One question which is still unanswered is whether t∗(0,+∞) is finite. We now study
it under the conditions of Example 2.6.

Theorem 2.7. Let (Xt)t≥0 be a strong solution of (2.1) and p(u) be defined by (2.4)
with p0 ≥ 0, p1 ≥ 0, and p2 > 0. If p0 = 0 and 2p1

b2 < 1, then

P
[
t∗(0,+∞) <∞, limt↑t∗

(0,+∞)
Xt = +∞

]
=

x∫
0

v−2p1/b
2 · exp

{
− 2p2v

b2

}
dv

+∞∫
0

v−2p1/b2 · exp
{
− 2p2v

b2

}
dv

. (2.5)

If either p0 = 0 and 2p1

b2 ≥ 1 or p0 > 0, then

P
[
t∗(0,+∞) <∞, limt↑t∗

(0,+∞)
Xt = +∞

]
= 1. (2.6)

Proof. Let n0 = min{n ∈ N : 1/n < x}. For all integer n such that n ≥ n0, we denote
by t∗(1/n,+∞) the first exit time from (1/n,+∞) for (Xt)t≥0, i.e.

t∗(1/n,+∞) = inf{t ≥ 0: Xt /∈ (1/n,+∞)}.

Note that the sequence of events
({
ω ∈ Ω: t∗(1/n,+∞)(ω) <∞, limt↑t∗

(1/n,+∞)
Xt(ω) = +∞

})
n≥n0

is monotone nondecreasing. Hence,

lim
n→∞

{
ω ∈ Ω: t∗(1/n,+∞)(ω) <∞, limt↑t∗

(1/n,+∞)
Xt(ω) = +∞

}

=
∞⋃

n=n0

{
ω ∈ Ω: t∗(1/n,+∞)(ω) <∞, limt↑t∗

(1/n,+∞)
Xt(ω) = +∞

}
.
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Furthermore,
∞⋃

n=n0

{
ω ∈ Ω: t∗(1/n,+∞)(ω) <∞, limt↑t∗

(1/n,+∞)
Xt(ω) = +∞

}

=
{
ω ∈ Ω: t∗(0,+∞)(ω) <∞, limt↑t∗

(0,+∞)
Xt(ω) = +∞

}
.

Therefore, by the continuity of probability measures, we conclude that

P
[
t∗(0,+∞) <∞, limt↑t∗

(0,+∞)
Xt = +∞

]

= P
[

lim
n→∞

{
t∗(1/n,+∞) <∞, limt↑t∗

(1/n,+∞)
Xt = +∞

}]

= lim
n→∞

P
[
t∗(1/n,+∞) <∞, limt↑t∗

(1/n,+∞)
Xt = +∞

]
.

(2.7)

From [13, pp. 343–344] it follows that E[t∗(1/n,+∞)] = Mn(x) for all n ≥ n0, where
Mn(x) is a solution of the boundary value problem

1

2
b2x2M ′′n (x) + (p2x

2 + p1x+ p0)M ′n(x) = −1, Mn

(
1

n

)
= 0, Mn(+∞) = 0, (2.8)

which can be solved by the usual technique (see, e.g., [1]). Here and subsequently,
the value of a function at +∞ stands for its limit as the value of the argument tends
to +∞.

Boundary value problem (2.8) has the unique solution

Mn(x) =
2mn(x)

b2mn(+∞)

+∞∫

1/n

mn(+∞)−mn(z)

z2m′n(z)
dz − 2

b2

x∫

1/n

mn(x)−mn(z)

z2m′n(z)
dz,

where

mn(x) =

x∫

1/n

exp




− 2

b2

v∫

1/n

p2u
2 + p1u+ p0

u2
du




dv.

Note that mn(+∞) < +∞. Furthermore, since

lim
z→+∞

mn(+∞)−mn(z)

m′n(z)
= lim
z→+∞

+∞∫
z

exp

{
− 2
b2

v∫
1/n

p2u
2+p1u+p0

u2 du

}
dv

exp

{
− 2
b2

z∫
1/n

p2u2+p1u+p0

u2 du

} =
b2

2p2
< +∞

(here we applied L’Hopital’s rule) and
+∞∫
1/n

1
z2 dz < +∞, we get

+∞∫

1/n

mn(+∞)−mn(z)

z2m′n(z)
dz < +∞.
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Thus, E[t∗(1/n,+∞)] < ∞ for all n ≥ n0. This gives P[t∗(1/n,+∞) < ∞] = 1 for all
n ≥ n0. Moreover, by [13, pp. 343–344], we have

P
[
limt↑t∗

(1/n,+∞)
Xt = +∞

]
=

x∫
1/n

exp

{
− 2
b2

v∫
1/n

p2u
2+p1u+p0

u2 du

}
dv

+∞∫
1/n

exp

{
− 2
b2

v∫
1/n

p2u2+p1u+p0

u2 du

}
dv

=

x∫
1/n

v−2p1/b
2 · exp

{
2p0

b2v −
2p2v
b2

}
dv

+∞∫
1/n

v−2p1/b2 · exp
{

2p0

b2v −
2p2v
b2

}
dv

.

(2.9)

Consequently, (2.7) and (2.9) yield

P
[
t∗(0,+∞) <∞, limt↑t∗

(0,+∞)
Xt = +∞

]
= lim
n→∞

x∫
1/n

v−2p1/b
2 · exp

{
2p0

b2v −
2p2v
b2

}
dv

+∞∫
1/n

v−2p1/b2 · exp
{

2p0

b2v −
2p2v
b2

}
dv

.

(2.10)
Consider now two cases.

Case 1. If p0 = 0 and 2p1

b2 < 1, then both of the integrals in the right-hand side
of (2.10) are finite as n→∞. This yields (2.5). Note that in this case

0 < P
[
t∗(0,+∞) <∞, limt↑t∗

(0,+∞)
Xt = +∞

]
< 1.

Case 2. If either p0 = 0 and 2p1

b2 ≥ 1 or p0 > 0, then both of the integrals in
the right-hand side of (2.10) are infinite as n → ∞. Applying L’Hopital’s rule we
obtain (2.6).

The theorem is proved.

Remark 2.8. Since c(u) is positive by our assumption, the surplus of the insurance
company becomes infinitely large in finite time a.s. if the premium intensity is a
quadratic function and the claims do not arrive. Note that the time interval between
two successive claims can be large enough with positive probability. Hence, the process(
Xt(x)

)
t≥0

that follows (1.3) goes to +∞ with positive probability. It is clear that
the ruin does not occur in this case. Consequently, from now on we can consider(
Xt(x)

)
t≥0

up to the minimum from the ruin time and its possible explosion.

3. EXISTENCE AND UNIQUENESS THEOREM

Consider now equation (1.3). Let t∗(x) be a possible explosion time of
(
Xt(x)

)
t≥0

, i.e.

t∗(x) = inf{t ≥ 0: Xt(x) /∈ (−∞,+∞)}.
To shorten notation, we let t∗ stand for t∗(x).
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Theorem 3.1. If c(u) is a locally Lipschitz continuous function on R, then (1.3) has
a unique strong solution up to the time τ ∧ t∗.

Proof. Since the process (Nt)t≥0 is homogeneous, it has only a finite number of jumps
on any finite time interval a.s. To prove the theorem, we study (1.3) between two
successive jumps of (Nt)t≥0.

Let us first consider (1.3) on the time interval [τ0, τ1). It can be rewritten as

Xt = Xτ0 +

t∫

τ0

(
c(Xs) + aXs

)
ds+ b

t∫

τ0

Xs dWs, τ0 ≤ t < τ1. (3.1)

By Theorem 7.1, the locally Lipschitz continuity of c(u) + au and bu on R implies
the existence of a unique strong solution of (3.1) on [τ0, τ1 ∧ t∗). Moreover, the com-
parison theorem (see, e.g., Theorem 1.1 in [11, pp. 437–438]) shows that this solution
is not less then the solution of

Xt = Xτ0 + a

t∫

τ0

Xs ds+ b

t∫

τ0

Xs dWs, τ0 ≤ t ≤ τ1 ∧ t∗, (3.2)

a.s. Since the solution of (3.2) is positive, so is the solution of (3.1) on [τ0, τ1 ∧ t∗).
Hence, limt↑t∗ Xt = +∞ if t∗ ≤ τ1. Thus, the ruin does not occur up to the time
τ1 ∧ t∗.

If t∗ ≤ τ1, then the theorem follows. Otherwise Xτ1− < +∞ and we set Xτ1 =
Xτ1− − Y1. Next, if Xτ1 < 0, then τ = τ1, which completes the proof. Otherwise we
consider (1.3) on the time interval [τ1, τ2). We rewrite it as

Xt = Xτ1 +

t∫

τ1

(
c(Xs) + aXs

)
ds+ b

t∫

τ1

Xs dWs, τ1 ≤ t < τ2. (3.3)

Repeating the same arguments, we conclude that (3.3) has a unique strong solution
on [τ1, τ2 ∧ t∗) and the ruin does not occur up to time τ2 ∧ t∗.

Thus, we have proved that (1.3) has a unique strong solution on [0, τ2 ∧ t∗), which
is our assertion if t∗ ≤ τ2. For the case t∗ > τ2, we set Xτ2 = Xτ2− − Y2. Next,
if Xτ2 < 0, then τ = τ2, which proves the theorem. Otherwise we continue in this
fashion and prove the theorem by induction.

Remark 3.2. Note that if t∗ <∞, then the proof of Theorem 3.1 implies limt↑t∗ Xt =
+∞ and (1.3) also holds for t = t∗ provided that we let both of its sides be formally
equal to +∞. In this case we formally set Xt∗ = +∞. In addition, if τ <∞, then we
set Xτ = Xτi−−Yi, where i is the number of the claim that caused the ruin, and (1.3)
also holds for t = τ .
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4. SUPERMARTINGALE PROPERTY FOR THE EXPONENTIAL PROCESS

Let the stopped process
(
X̃t(x)

)
t≥0

be defined by X̃t(x) = Xt∧τ∧t∗(x). Note that(
X̃t(x)

)
t≥0

is a solution of (1.3) provided that
(
Xt(x)

)
0≤t<τ∧t∗ is. In particular, if

t∗ <∞, we formally let X̃t(x) = +∞ for all t ≥ t∗ and (1.3) hold.
For all r ≥ 0, we define the processes

(
Ut(x, r)

)
t≥0

and
(
Vt(x, r)

)
t≥0

by

Ut(x, r) = −rX̃t(x) and Vt(x, r) = eUt(x,r).

In what follows, we write X̃t, Ut, and Vt instead of X̃t(x), Ut(x, r), and Vt(x, r),
respectively, when no confusion can arise. Recall that λ > 0 is the intensity of the
Poisson process (Nt)t≥0. The function h(r) and the constant r∞ ∈ (0,+∞], which are
used below, were defined in the Introduction.

Theorem 4.1. If (1.3) has a unique strong solution up to the time τ ∧ t∗ and there
exists r̂ ∈ (0, r∞) such that

r̂2b2

2
u2 − r̂

(
c(u) + au

)
+ λh(r̂) ≤ 0 for all u ≥ 0, (4.1)

then
(
Vt(x, r)

)
t≥0

is an (Ft)-supermartingale.

Proof. Since
(
X̃t

)
t≥0

is a solution of (1.3), we have

Ut = −rx− r
t∧τ∧t∗∫

0

(
c(Xs) + aXs

)
ds− rb

t∧τ∧t∗∫

0

Xs dWs + r

Nt∧τ∧t∗∑

i=1

Yi, t ≥ 0. (4.2)

The process (X̃t)t≥0 is a sum of local martingales and càdlàg processes of locally
bounded variation. Indeed, since

E



∣∣∣∣∣∣

t∧τ∧t∗∧Tn∫

0

Xs dWs

∣∣∣∣∣∣


 < +∞

for all t ≥ 0, the process
(∫ t∧τ∧t∗

0
Xs dWs

)
t≥0

is a local (Ft)-martingale with the

localizing sequence (Tn)n≥1, where

Tn = inf{t ≥ 0: Xt ≥ n} ∧ n.

Similarly,
(∫ t∧τ∧t∗

0
Xs ds

)
t≥0

and
(∫ t∧τ∧t∗

0
c(Xs) ds

)
t≥0

are càdlàg processes of locally

bounded variation with the localizing sequence (Tn)n≥1. Next, the process
(
Nt∧τ∧t∗∑

i=1

Yi − λµ(t ∧ τ ∧ t∗)
)

t≥0
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is a compensated process with independent increments. Hence, it is an (Ft)-martin-
gale.

Thus, (Ut)t≥0 is an (Ft)-semimartingale and so is (Vt)t≥0. Applying Itô’s formula

g(Ut)− g(U0) =

t∫

0+

g′(Us−) dUs +
1

2

t∫

0+

g′′(Us−) d〈U c, U c〉s

+
∑

0<s≤t

(
g(Us)− g(Us−)− g′(Us−)(Us − Us−)

)
, t ≥ 0,

where (Ut)t≥0 is a semimartingale, (U ct )t≥0 is a continuous component of the local
martingale in the decomposition of (Ut)t≥0, and g ∈ C2(R), we get

Vt = e−rx +

t∧τ∧t∗∫

0+

eUs− dUs +
1

2

t∧τ∧t∗∫

0+

eUs− d〈U c, U c〉s

+
∑

0<s≤t∧τ∧t∗

(
eUs − eUs− − eUs− (Us − Us−)

)
, t ≥ 0,

(4.3)

where

Ut− = −rx− r
t∧τ∧t∗∫

0

(
c(Xs) + aXs

)
ds− rb

t∧τ∧t∗∫

0

Xs dWs + r
∑

0<s≤t−∧τ∧t∗
YNsI{∆Ns 6=0},

dUs = −r
(
c(X̃s) + aX̃s

)
ds− rbX̃s dWs + rYNsI{∆Ns 6=0},

d〈U c, U c〉s = r2b2X̃2
s ,

eUs − eUs− = eUs− (erYNs I{∆Ns 6=0} − 1),

Us − Us− = rYNsI{∆Ns 6=0},

∆Ns = Ns −Ns− .
Substituting all the above equalities into (4.3) yields

Vt = e−rx − r
t∧τ∧t∗∫

0+

eUs−
(
c(Xs) + aXs

)
ds− rb

t∧τ∧t∗∫

0+

eUs−Xs dWs

+ r
∑

0<s≤t∧τ∧t∗
eUs−YNsI{∆Ns 6=0} +

1

2
r2b2

t∧τ∧t∗∫

0+

eUs−X2
s ds

+
∑

0<s≤t∧τ∧t∗
eUs−

(
erYNs I{∆Ns 6=0} − 1− rYNsI{∆Ns 6=0}

)
, t ≥ 0.

(4.4)
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Simplifying (4.4) gives

Vt = e−rx +

t∧τ∧t∗∫

0+

eUs−
(

1

2
r2b2X2

s − r
(
c(Xs) + aXs

))
ds

− rb
t∧τ∧t∗∫

0+

eUs−Xs dWs +
∑

0<s≤t∧τ∧t∗
eUs−

(
erYNs I{∆Ns 6=0} − 1

)
, t ≥ 0.

(4.5)

Next, the process

 ∑

0<s≤t∧τ∧t∗
eUs−

(
erYNs I{∆Ns 6=0} − 1

)


t≥0

is nondecreasing and can be written in integral form

∑

0<s≤t∧τ∧t∗
eUs−

(
erYNs I{∆Ns 6=0} − 1

)
=

t∧τ∧t∗∫

0+

eUs− dQs, t ≥ 0,

where
Qt =

∑

0<s≤t∧τ∧t∗

(
erYNs I{∆Ns 6=0} − 1

)
.

By Wald’s identity, E[Qt] = λth(r). Hence, E[Qt] < +∞ for all t ≥ 0 and r < r∞.
Furthermore, since (Qt)t≥0 is a process with independent increments, the compensated
process

(
Qt − E[Qt]

)
t≥0

is an (Ft)-martingale. Thus,



∑

0<s≤t∧τ∧t∗

(
erYNs I{∆Ns 6=0} − 1

)
− λh(r)

t∧τ∧t∗∫

0+

eUs− ds



t≥0

is a local (Ft)-martingale with the localizing sequence (Tn)n≥1 defined above.
Since we have already justified at the beginning of the proof that

(
−rb

t∧τ∧t∗∫

0+

eUs−Xs dWs

)
t≥0

is also a local (Ft)-martingale with the localizing sequence (Tn)n≥1, so is

−rb

t∧τ∧t∗∫

0+

eUs−Xs dWs +
∑

0<s≤t∧τ∧t∗

(
erYNs I{∆Ns 6=0} − 1

)
− λh(r)

t∧τ∧t∗∫

0+

eUs− ds



t≥0

.
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We define the process (Rt)t≥0 by

Rt = Vt − V0 + rb

t∧τ∧t∗∫

0+

eUs−Xs dWs

−
∑

0<s≤t∧τ∧t∗

(
erYNs I{∆Ns 6=0} − 1

)
+ λh(r)

t∧τ∧t∗∫

0+

eUs− ds.

Substituting Vt from (4.5) we obtain

Rt =

t∧τ∧t∗∫

0+

e−rXs−
(

1

2
r2b2X2

s − r
(
c(Xs) + aXs

)
+ λh(r)

)
ds, t ≥ 0.

Note (Vt)t≥0 is a local (Ft)-supermartingale with the localizing sequence (Tn)n≥1

provided that (Rt)t≥0 is a measurable nonincreasing process, i.e.

t2∧τ∧t∗∫

t1∧τ∧t∗
e−rXs−

(
1

2
r2b2X2

s − r
(
c(Xs) + aXs

)
+ λh(r)

)
ds ≤ 0 for all t2 ≥ t1 ≥ 0.

(4.6)
By the assumption of the theorem, there exists r̂ ∈ (0, r∞) such that (4.1) holds.
Therefore, (4.6) is true with r = r̂ and (Vt(x, r̂))t≥0 is a nonnegative local (Ft)-super-
martingale with the localizing sequence (Tn)n≥1.

By Fatou’s lemma, for all t2 ≥ t1 ≥ 0, we get

0 ≤ E
[
Vt2(x, r̂) /Ft1

]
= E

[
lim
n→∞

Vt2∧Tn(x, r̂) /Ft1

]
= E

[
lim inf
n→∞

Vt2∧Tn(x, r̂) /Ft1

]

≤ lim inf
n→∞

E
[
Vt2∧Tn(x, r̂) /Ft1

]
≤ lim inf

n→∞
Vt1∧Tn(x, r̂) = Vt1(x, r̂).

Hence, (Vt(x, r̂))t≥0 is an (Ft)-supermartingale, which completes the proof.

Theorem 4.1 allows us to get an exponential bound for the ruin probability under
certain conditions.

5. EXPONENTIAL BOUND FOR THE RUIN PROBABILITY

Let the premium intensity c(u) be a quadratic function for u ≥ 0, i.e.

c(u) =

{
c2u

2 + c1u+ c0 if u ≥ 0,

c0 if u < 0,
(5.1)

where c2 6= 0. The function c(u) is strictly increasing and positive on [0,+∞) if and
only if c0 > 0, c1 ≥ 0, and c2 > 0. This model implies that the premium intensity
grows rapidly with increasing surplus. Recall that the infinite-horizon ruin probability
is given by ψ(x) = P

[
inft≥0Xt(x) < 0

]
, which is equivalent to ψ(x) = P[τ(x) <∞].
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Theorem 5.1. Let the surplus process (Xt(x))t≥0 follow (1.3) under the above as-
sumptions, the premium intensity c(u) be defined by (5.1) with c0 > 0, c1 ≥ 0, and
c2 > 0. Moreover, let a+ c1 ≥ 0 and at least one of the following two conditions hold:

1) 2c2
b2 < r∞ and h

(
2c2
b2

)
≤ 2c0c2

b2λ ,
2) λµ < c0.

Then for all x ≥ 0, we have
ψ(x) ≤ e−r̂x, (5.2)

where r̂ = 2c2
b2 if condition 1) holds, and r̂ = min

{
r0,

2c2
b2

}
if condition 1) holds. Here

r0 stands for the unique positive solution of

h(r) =
c0r

λ
. (5.3)

Lemma 5.2. Let the conditions of Theorem 5.1 hold. Then the process
(
Vt(x, r̂)

)
t≥0

is an (Ft)-supermartingale, where r̂ = 2c2
b2 if condition 1) of Theorem 5.1 is true, and

r̂ is an arbitrary number from (0, r0] for r0 <
2c2
b2 or from

(
0, 2c2

b2

)
for r0 ≥ 2c2

b2 if
condition 2) of Theorem 5.1 is true. Here r0 stands for the unique positive solution
of (5.3).

Proof of Lemma 5.2. Since c(u) defined by (5.1) is a locally Lipschitz continuous
function on R, equation (1.3) has a unique strong solution up to the time τ ∧ t∗
by Theorem 3.1. According to Theorem 4.1, if there exists r̂ ∈ (0, r∞) such that

(
r̂2b2

2
− r̂c2

)
u2 − r̂(a+ c1)u− r̂c0 + λh(r̂) ≤ 0 for all u ≥ 0, (5.4)

then
(
Vt(x, r̂)

)
t≥0

is an (Ft)-supermartingale.
Condition (5.4) holds in one of the two following cases.

Case 1. The coefficient of u2 is equal to 0, i.e. r̂ = 2c2
b2 . Then (5.4) is true if and only

if
2c2
b2

< r∞ and − 2c2
b2
c0 + λh

(
2c2
b2

)
≤ 0,

which coincides with condition 1) of the theorem.
Case 2. The coefficient of u2 is negative, i.e. r̂ ∈

(
0, 2c2

b2

)
. Since u = a+c1

r̂b2−2c2
, which is

negative, maximizes the left-hand side of (5.4), the last one is true if and only if

r̂ ∈
(

0,min

{
2c2
b2
, r∞

})
(5.5)

and
λh(r̂) ≤ c0r̂. (5.6)

Consider the functions g1(r) = λh(r) and g2(r) = c0r on [0, r∞). Note that
g1(0) = 0, g2(0) = 0, g′1(0) = λµ, and g′2(0) = c0. Moreover, since h(r) is increasing
and convex, so is g1(r). Thus, we get the following.
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If λµ ≥ c0, then g2(r) < g1(r) for all r ∈ (0, r∞). Hence, for no r̂ ∈ (0, r∞)
does (5.4) hold.

If λµ < c0, then the equation g1(r) = g2(r) has a unique solution r0 ∈ (0, r∞).
Therefore, (5.3) has a unique positive solution and (5.6) is true for all r̂ ∈ (0, r0].
Taking into account the condition (5.5) we conclude that (5.4) holds for all r̂ ∈ (0, r0]
if r0 <

2c2
b2 , and for all r̂ ∈

(
0, 2c2

b2

)
if r0 ≥ 2c2

b2 .
The lemma is proved.

Proof of Theorem 5.1. Let r̂ be defined in the assertion of Lemma 5.2. Then(
Vt(x, r̂)

)
t≥0

is an (Ft)-supermartingale by this lemma. Therefore, for all t ≥ 0, we
get

e−r̂x = V0(x, r̂) ≥ E
[
Vt(x, r̂) /F0

]
= E

[
e−r̂Xt∧τ∧t∗ (x)

]

= E
[
e−r̂Xτ (x) · I{τ(x)<t∧t∗}

]
+ E

[
e−r̂Xt∧t∗ (x) · I{τ(x)≥t∧t∗}

]

≥ E
[
e−r̂Xτ (x) · I{τ(x)<t∧t∗}

]
.

(5.7)

Letting t→∞ in (5.7) gives

E
[
e−r̂Xτ (x) · I{τ(x)<t∗}

]
≤ e−r̂x. (5.8)

Since the surplus becomes infinitely large at the explosion time, the ruin does not
occur after t∗. Hence,

{
ω ∈ Ω: τ(x, ω) < t∗(x, ω)

}
=
{
ω ∈ Ω: τ(x, ω) <∞

}

and (5.8) can be rewritten as

E
[
e−r̂Xτ (x) · I{τ(x)<∞}

]
≤ e−r̂x. (5.9)

Furthermore,

E
[
e−r̂Xτ (x) · I{τ(x)<∞}

]
= E

[
e−r̂Xτ (x) / τ(x) <∞

]
· P[τ(x) <∞],

and
E
[
e−r̂Xτ (x) · I{τ(x)<∞}

]
≥ 1

by the definition of the ruin time. Therefore, from (5.9) we conclude that

P[τ(x) <∞] ≤ e−r̂x

E
[
e−r̂Xτ (x) / τ(x) <∞

] ≤ e−r̂x,

which yields (5.2).
What is left is to note that the larger r̂ we choose, the better bound in (5.2) we

get. Thus, if condition 2) of the theorem holds and r0 <
2c2
b2 , then we set r̂ = r0. If

condition 2) of the theorem holds and r0 ≥ 2c2
b2 , then (5.2) is true for all r̂ ∈

(
0, 2c2

b2

)
;

hence, it is also true for r̂ = 2c2
b2 . This completes the proof.
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6. SUFFICIENT CONDITIONS FOR I1 BEING FINITE
AND I2 BEING INFINITE

Consider now equation (2.1). Let I1 and I2 be defined by (2.2). The following lemmas
provide sufficient conditions for I1 being finite and I2 being infinite.

Lemma 6.1. If condition (2.3) holds, then I1 < +∞.

Proof. Since
+∞∫
x

1
v1+ε dv < +∞ for all ε > 0, it suffices to show that

lim sup
v→+∞

exp

{
− 2
b2

v∫
x

p(u)
u2 du

}

exp {−(1 + ε) ln v} < +∞ for some ε > 0 (6.1)

in order to get I1 < +∞.
We can rewrite (6.1) as

lim sup
v→+∞

exp



(1 + ε) ln v − 2

b2

v∫

x

p(u)

u2
du



 < +∞ for some ε > 0,

which gives (2.3).

Lemma 6.2. If p(0) > 0, then I2 = −∞.

Proof. It is easily seen that

−I2 ≥
x∫

0

exp





2p(0)

b2

x∫

v

1

u2
du



 dv = exp

{
−2p(0)

b2x

}
·
x∫

0

exp

{
2p(0)

b2v

}
dv

= exp

{
−2p(0)

b2x

}
·

+∞∫

1/x

1

u2
exp

{
2p(0)u

b2

}
du = +∞,

which proves the lemma.

7. AUXILIARY THEOREMS

Consider the following stochastic differential equation

Xt = x+

t∫

0

p(Xs) ds+

t∫

0

b(Xs) dWs, t ≥ 0, (7.1)

where x ∈ R, (Wt)t≥0 is a standard Brownian motion, p : R→ R, and b : R→ R.
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Theorem 7.1 ([11, pp. 178–179], Theorem 3.1). If the functions p(l) and b(l) are
locally Lipschitz continuous on R, then (7.1) has a unique strong solution up to the
time t∗ = inf{t ≥ 0: Xt /∈ (−∞,+∞)}.
Theorem 7.2 ([11, p. 447], Theorem 3.1). Let (Xt)t≥0 follow (7.1), the functions
p(l) and b(l) are continuously differentiable on (l1, l2), and b2(l) > 0 on (l1, l2), where
l1 and l2 are such that −∞ ≤ l1 < x < l2 ≤ +∞. For all l ∈ (l1, l2), we define

I(l) =

l∫

x

exp



−

v∫

x

2p(u)

b2(u)
du



 dv.

Moreover, let I(l1) = liml↓l1 I(l), I(l2) = liml↑l2 I(l), and

t∗(l1,l2) = inf{t ≥ 0: Xt /∈ (l1, l2)}.

1. If I(l1) = −∞ and I(l2) = +∞, then

P
[
t∗(l1,l2) =∞

]
= P

[
lim supt↑∞Xt = l2

]
= P

[
lim inft↑∞Xt = l1

]
= 1.

2. If I(l1) > −∞ and I(l2) = +∞, then limt↑t∗
(l1,l2)

Xt exists a.s. and

P
[
limt↑t∗

(l1,l2)
Xt = l1

]
= P

[
supt<t∗

(l1,l2)
Xt < l2

]
= 1.

3. If I(l1) = −∞ and I(l2) < +∞, then limt↑t∗
(l1,l2)

Xt exists a.s. and

P
[
limt↑t∗

(l1,l2)
Xt = l2

]
= P

[
inft<t∗

(l1,l2)
Xt > l1

]
= 1.

4. If I(l1) > −∞ and I(l2) < +∞, then limt↑t∗
(l1,l2)

Xt exists a.s. and

P
[
limt↑t∗

(l1,l2)
Xt = l1

]
= 1− P

[
limt↑t∗

(l1,l2)
Xt = l2

]
=

I(l2)

I(l2)− I(l1)
.
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