Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Three commercially available intercooled compression strategies for compressing CO2 were studied. All of the compression concepts required a final delivery pressure of 153 bar at the inlet to the pipeline. Then, simulations were used to determine the maximum safe pipeline distance to subsequent booster stations as a function of inlet pressure, environmental temperature, thickness of the thermal insulation and ground level heat flux conditions. The results show that subcooled liquid transport increases energy efficiency and minimises the cost of CO2 transport over long distances under heat transfer conditions. The study also found that the thermal insulation layer should not be laid on the external surface of the pipe in atmospheric conditions in Poland. The most important problems from the environmental protection point of view are rigorous and robust hazard identification which indirectly affects CO2 transportation. This paper analyses ways of reducing transport risk by means of safety valves.
Czasopismo
Rocznik
Tom
Strony
497--514
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Instiute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Instiute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Instiute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Instiute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
- 1. Antoniades C., Christofides P.D., 2001. Studies on nonlinear dynamics and control of a tubular reactor with recycle. Nonlinear Analysis - Theory Methods and Applications, 47, 5933-5944. PII: S0362-546X(01)00699-X.
- 2. Aspen Plus, Version 7.0, 2008, User Guide.
- 3. Botero C., Finkenrath M., Belloni C., Bertolo S., D’Ercole M., Gori E., Tacconelli R., 2009. Thermoeconomic evaluation of CO2 compression strategies for post-combustion CO2 capture application. Proc. ASME Turbo Expo 2009: Power for Land, Sea, and Air, 517-526. DOI: 10.1115/GT2009-60217.
- 4. Bovon P.R., Habel R., 2007. CO2 compression challangers. ASME Turbo Expo. Montreal. 15 May 2007.
- 5. Det Norske Veritas, 2010. Design and operation of CO2 pipelines. Recommended practice, DNV-RP-J202. DNV, Veritasveien, Høvik, Norway.
- 6. Incropera F.P., DeWitt D.P., 1996. Introduction to heat transfer. 3rd edition, John Wiley & Sons, Inc., New York.
- 7. Koopman A.A., Bahr D.A., 2010. The impact of CO2 compressor characteristics and integration in postcombustion carbon sequestration. Comparative economic analysis. Proc. ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, UK, 14–18 June 2010, 601-608. DOI: 10.1115/GT2010-22974.
- 8. Koornneef J., Spruijt M., Molag M., Ramirez A., Turkenburg W., Faaij, A., 2010. Quantitative risk assessment of CO2 transport by pipelines – A review of uncertainties and their impacts. J. Hazard. Mater., 177, 12-27. DOI: 10.1016/j.jhazmat.2009.11.068.
- 9. Lüdtke H., 2004. Process Centrifugal Compressors. Springer Berlin Heidelberg. DOI: 10.1007/978-3-662-09449-5.
- 10. Łukowicz H., Dykas S., Rulik S., Stępczyńska K., 2010. Thermodynamic and economic analysis of a 900 MW ultra-supercritical power unit. Arch. Thermodyn., 32, 231-244. DOI: 10.2478/v10173-011-0025-1.
- 11. McCoy S.T., Rubin E. S., 2008. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int. J. Greenhouse Gas Control, 2, 219-229. DOI: 10.1016/S1750-5836(07)00119-3.
- 12. McGillivray A., Wilday J., 2009. Comparison of risks from carbon dioxide and natural gas pipelines, HSE report rr749, available at: www.hse.gov.uk/research/rrpdf/rr749.pdf.
- 13. Mohitpour M., Seevam P., Botros K.K., Rothwell B., Ennis C., 2012. Pipeline transportation of carbon dioxide containing impurities. ASME Press, New York.
- 14. Moore J.J., Nored M.G., 2008. Novel concepts for the compression of large volumes of carbon dioxide, Proc. ASME Turbo Expo 2008: Power for Land, Sea, and Air. Berlin, Germany, 9–13 June 2008, 645-653. DOI:10.1115/GT2008-50924. PHAST v.6.7, DNV Software, 2010.
- 15. Wolk R.H., 2009. Proceedings of the workshop on future large CO2 compression systems. Gaithersburg, 30-31 March 2009, available at: http://www.nist.gov/pml/high_megawatt/upload/March-2009-CO2-Workshop-Proceedings.pdf.
- 16. Witkowski A., Rusin A., Majkut M., Rulik S., Stolecka K., 2013. Comprehensive analyses of the pipeline transportation systems for CO2 sequestration. Thermodynamics and safety problems. Energy Convers. Manage., 76, 665-673. DOI: 10.1016/j.enconman.2013.07.087.
- 17. Witlox H.W.M., Harper M., Oke A., 2009. Modelling of discharge and atmospheric dispersion for carbon dioxide releases. J. Loss Prev. Process Ind., 22, 95-802. DOI: 10.1016/j.egypro.2011.02.114.
- 18. Zhang D., Wang Z., Sun J., Zhang L., Zheng L., 2012. Economic evaluation of CO2 pipeline transport in China.
- 19. Energy Convers. Manage., 55, 127-135. DOI: 10.1016/j.enconman.2011.10.022.
- 20. Zhang Z.X., Wang G.X. Massarotto, P., Rudolph V., 2006. Optimization of pipeline transport for CO2 sequestration. Energy Convers. Manage., 47, 702-715. DOI: 10.1016/j.enconman.2005.06.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6f0ea13-027f-40a0-9f72-2958787138c9