Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
A Review of Nanofluids and Porous Materials Application for Indirect Evaporative Cooling
Języki publikacji
Abstrakty
Pośrednie chłodzenie wyparne staje się coraz bardziej popularne ze względu na wykorzystanie przyjaznych dla środowiska czynników chłodniczych: powietrza (R-729) i wody (R-718). Istotą procesu jest wymiana ciepła i masy, która zachodzi w wymienniku. Opracowania zagraniczne szeroko opisują nowoczesne technologie wspomagające ten proces, podczas gdy polskojęzyczna literatura nie porusza zagadnienia niemalże w ogóle. W artykule skupiono się na dwóch głównych innowacjach wynikających z przeglądu literatury (od 2010 roku): wprowadzeniu nanopłynów opartych na wodzie oraz zastosowaniu materiałów porowatych na powierzchni kanału mokrego. Przeanalizowano kluczowe parametry stosowane do opisu urządzeń do chłodzenia wyparnego takie jak sprawności: termometru mokrego, punktu rosy oraz egzergetyczną, wydajność chłodniczą, EER oraz COP. Przedstawiono wyniki badań nanopłynów jedno-, dwu- i trzyskładnikowych. Analiza wykazała poprawę parametrów charakteryzujących pośrednie urządzenia wyparne wynoszące od kilku do kilkudziesięciu procent przy zastosowaniu nanopłynów w zależności od temperatury powietrza na wlocie. Dokonano przeglądu stosowanych materiałów porowatych stanowiących powierzchnie kanału mokrego. Wydzielono cztery główne typy stosowanych materiałów: porowate ceramiczne oraz włókna naturalne, polimerowe i tekstylne. Zestawiono wady oraz zalety stosowania tych materiałów w wymiennikach pośrednich w celu ułatwienia wyboru rodzaju materiału. Określono, że spośród dwóch omawianych modyfikacji w pierwszej kolejności należy skupić się na aplikacji materiałów porowatych, jako że są one związane bezpośrednio z konstrukcją wymiennika. Natomiast nanopłyny można zastosować w urządzeniach istniejących. W podsumowaniu stwierdzono, że rozwój technologii pośredniego chłodzenia wyparnego może stanowić istotne oraz ekologiczne uzupełnienie obecnie stosowanych sprężarkowych systemów chłodzenia.
Indirect evaporative cooling is becoming increasingly popular due to the use of environmentally friendly refrigerants: air (R-729) and water (R-718). The main idea of the process is the heat and mass transfer that takes place in the exchanger. Foreign studies extensively describe modern technologies supporting this process, while the Polish-language literature does not cover the issue almost at all. The article focuses on two main innovations resulting from the literature review (as of 2010): the introduction of water-based nanofluids and the use of porous materials on the surface of the wet channel. Main parameters used to describe evaporative cooling devices include wet thermometer, dew point, and exergetic efficiencies, cooling capacity, EER, and COP. Results for single-, two-, and three-component nanofluids are presented. The analysis showed performance improvements for indirect evaporative units of several to tens of percent with nanofluids, depending on the inlet air temperature. The applied porous materials used on the surface of the wet channel were reviewed. Four main types of materials used have been distinguished: porous ceramic and natural fibers, polymer fibers, and fabric fibers. The advantages and disadvantages of using these materials in indirect heat exchangers were summarized to facilitate the choice of material type. It was determined that of the two modifications discussed, the application of porous materials should be focused on first, since they are directly related to the construction of the heat exchanger. In contrast, nanofluids can be applied to existing devices. Eventually, it was pointed out that the development of indirect evaporative cooling technology can be an important and ecological complement to the currently used compressor systems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
33--40
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
- Katedra Klimatyzacji, Ogrzewnictwa, Gazownictwa i Ochrony Powietrza, Politechnika Wrocławska
autor
- Katedra Klimatyzacji, Ogrzewnictwa, Gazownictwa i Ochrony Powietrza, Politechnika Wrocławska
autor
- Katedra Klimatyzacji, Ogrzewnictwa, Gazownictwa i Ochrony Powietrza, Politechnika Wrocławska
Bibliografia
- [1] Adun, Humphrey, Doga Kavaz, and Mustafa Dagbasi. 2021. “Review of Ternary Hybrid Nanofluid: Synthesis, Stability, Thermophysical Properties, Heat Transfer Applications, and Environmental Effects.” Journal of Cleaner Production 328 (December): 129525. https://doi.org/10.1016/j.jclepro.2021.129525.
- [2] Ahuja, Avtar S. 1982. “Thermal Design of a Heat Exchanger Employing Laminar Flow of Particle Suspensions.” International Journal of Heat and Mass Transfer 25 (5): 725-28. https://doi.org/10.1016/0017-9310(82)90179-X.
- [3] Ahuja, Avtar Singh. 1975a. “Augmentation of Heat Transport in Laminar Flow of Polystyrene Suspensions. I. Experiments and Results.” Journal of Applied Physics 46 (8): 3408–16. https://doi.org/10.1063/1.322107.
- [4] Ahuja, Avtar Singh. 1975b. “Augmentation of Heat Transport in Laminar Flow of Polystyrene Suspensions. II. Analysis of the Data.” Journal of Applied Physics 46 (8): 3417-25. https://doi.org/10.1063/1.322062.
- [5] Al-Sulaiman, Faleh. 2002. “Evaluation of the Performance of Local Fibers in Evaporative Cooling.” Energy Conversion and Management 43 (16): 2267-73. https://doi.org/10.1016/S0196-8904(01)00121-2.
- [6] Amiri, Mohammad, Salman Movahedirad, and Faranak Manteghi. 2016. “Thermal Conductivity of Water and Ethylene Glycol Nanofluids Containing New Modified Surface SiO2-Cu Nanoparticles: Experimental and Modeling.” Applied Thermal Engineering 108 (September): 48-53. https://doi.org/10.1016/j.applthermaleng.2016.07.091.
- [7] AOLAN INDUSTRY CO., LTD. n.d. “Evaporative Air Cooler Wind Domination.” Dostęp Sierpień 15, 2023. https://www.aolan-china. com/product-detail.html?id=10
- [8] Ashari, A., T.M. Bucher, H. Vahedi Tafreshi, M.A. Tahir, and M.S.A. Rahman. 2010. “Modeling Fluid Spread in Thin Fibrous Sheets: Effects of Fiber Orientation.” International Journal of Heat and Mass Transfer 53 (9-10): 1750-58. https://doi.org/10.1016/j.ijheatmass transfer.2010.01.015.
- [9] Biercuk, M. J., M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer. 2002. “Carbon Nanotube Composites for Thermal Management.” Applied Physics Letters 80 (15): 2767-69. https://doi.org/10.1063/1.1469696.
- [10] Chandrasekar, M., S. Suresh, and A. Chandra Bose. 2010. “Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid.” Experimental Thermal and Fluid Science 34 (2): 210-16. https://doi.org/10.1016/j.expthermflusci.2009.10.022.
- [11] Chen, Yu, Nannan Wang, Oluwafunmilola Ola, Yongde Xia, and Yanqiu Zhu. 2021. “Porous Ceramics: Light in Weight but Heavy in Energy and Environment Technologies.” Materials Science and Engineering: R: Reports 143 (January): 100589. https://doi.org/10.1016/j.mser.2020.100589.
- [12] Choi, S. U. S., Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke. 2001. “Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions.” Applied Physics Letters 79 (14): 2252-54. https://doi.org/10.1063/1.1408272.
- [13] Choi, Stephen U. S., and Jeffrey A. Eastman. 1995. “Enhancing Thermal Conductivity of Fluids with Nanoparticles.” In 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA (United States), 12-17 Nov 1995.
- [14] Choi, Stephen U. S., and Shinpyo Lee. 1996. “Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems.” In 1996 International Mechanical Engineering Congress and Exhibition, Atlanta, GA (United States), 17-22 Nov 1996.
- [15] Chon, Chan Hee, Sokwon Paik, Joseph B. Tipton, and Kenneth D. Kihm. 2007. “Effect of Nanoparticle Sizes and Number Densities on the Evaporation and Dryout Characteristics for Strongly Pinned Nanofluid Droplets.” Langmuir 23 (6): 2953-60. https://doi.org/10.1021/la061661y.
- [16] Das, Sarit Kumar, Stephen U. S. Choi, and Hrishikesh E. Patel. 2006. “Heat Transfer in Nanofluids - A Review.” Heat Transfer Engineering 27 (10): 3-19. https://doi.org/10.1080/01457630600904593.
- [17] Duan, Zhiyin, Changhong Zhan, Xudong Zhao, and Xuelin Dong. 2016. “Experimental Study of a Counter-Flow Regenerative Evaporative Cooler.” Building and Environment 104 (August): 47–58. https://doi.org/10.1016/J.BUILDENV.2016.04.029.
- [18] Eastman, J. A., U. S. Choi, S. Li, L. J. Thompson, and S. Lee. 1996. “Enhanced Thermal Conductivity through the Development of Nanofluids.” MRS Proceedings 457 (February): 3. https://doi.org/10.1557/PROC-457-3.
- [19] Elnaqeeb, Thanaa, Isaac Lare Animasaun, and Nehad Ali Shah. 2021. “Ternary-Hybrid Nanofluids: Significance of Suction and Dual-Stretching on Three-Dimensional Flow of Water Conveying Nanoparticles with Various Shapes and Densities.” Zeitschrift Für Naturforschung A 76 (3): 231-43. https://doi.org/10.1515/zna-2020-0317.
- [20] Hammel, E.C., O.L.-R. Ighodaro, and O.I. Okoli. 2014. “Processing and Properties of Advanced Porous Ceramics: An Application Based Review.” Ceramics International 40 (10): 15351-70. https://doi.org/10.1016/j.ceramint.2014.06.095.
- [21] Kashyap, Sarvesh, Jahar Sarkar, and Amitesh Kumar. 2021a. “Effect of Surface Modifications and Using Hybrid Nanofluids on Energy-Exergy Performance of Regenerative Evaporative Cooler.” Building and Environment 189 (February): 107507. https://doi.org/10.1016/j.buildenv.2020.107507.
- [22] Kashyap, Sarvesh, Jahar Sarkar, and Amitesh Kumar.. 2021b. “Performance Enhancement of Regenerative Evaporative Cooler by Surface Alterations and Using Ternary Hybrid Nanofluids.” Energy 225 (June): 120199. https://doi.org/10.1016/j.energy.2021.120199.
- [23] Khedkar, Rohit S., Shriram S. Sonawane, and Kailas L. Wasewar. 2012. “Influence of CuO Nanoparticles in Enhancing the Thermal Conductivity of Water and Monoethylene Glycol Based Nanofluids.” International Communications in Heat and Mass Transfer 39 (5): 665–69. https://doi.org/10.1016/j.icheatmasstransfer.2012.03.012.
- [24] Kumar, Nishant, and Shriram S. Sonawane. 2016. “Experimental Study of Thermal Conductivity and Convective Heat Transfer Enhancement Using CuO and TiO 2 Nanoparticles.” International Communications in Heat and Mass Transfer 76 (August): 98-107. https://doi. org/10.1016/j.icheatmasstransfer.2016.04.028.
- [25] Lee, S., S. U.-S. Choi, S. Li, and J. A. Eastman. 1999. “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles.” Journal of Heat Transfer 121 (2): 280-89. https://doi.org/10.1115/1.2825978.
- [26] Lee, Seung Won, Sung Dae Park, Sarah Kang, In Cheol Bang, and Ji Hyun Kim. 2011. “Investigation of Viscosity and Thermal Conductivity of SiC Nanofluids for Heat Transfer Applications.” International Journal of Heat and Mass Transfer 54 (1-3): 433-38. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.026.
- [27] Leong, Kin Yuen, Idayu Razali, K.Z. Ku Ahmad, Hwai Chyuan Ong, M.J. Ghazali, and Mohd Rosdzimin Abdul Rahman. 2018. “Thermal Conductivity of an Ethylene Glycol/Water-Based Nanofluid with Copper-Titanium Dioxide Nanoparticles: An Experimental Approach.” International Communications in Heat and Mass Transfer 90 (January): 23-28. https://doi.org/10.1016/j.icheatmasstransfer.2017.10.005.
- [28] Lin, Jie, Duc Thuan Bui, Ruzhu Wang, and Kian Jon Chua. 2018. “On the Exergy Analysis of the Counter-Flow Dew Point Evaporative Cooler.” Energy 165 (December): 958–71. https://doi.org/10.1016/j.energy.2018.10.042.
- [29] Liu, M.-S., M. C.-C. Lin, I.-T. Huang, and C.-C. Wang. 2006. “Enhancement of Thermal Conductivity with CuO for Nanofluids.” Chemical Engineering & Technology 29 (1): 72-77. https://doi.org/10.1002/ceat.200500184.
- [30] Lv, Jing, Haodong Xu, Mengya Zhu, Yuwei Dai, Hongzhi Liu, and Zhao Li. 2021. “The Performance and Model of Porous Materials in the Indirect Evaporative Cooling System: AReview.” Journal of Building Engineering 41 (September): 102741. https://doi.org/10.1016/j. jobe.2021.102741.
- [31] Masuda, Hidetoshi, Akira Ebata, Kazunari Teramae, and Nobuo Hishinuma. 1993. “Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles. Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles.” Netsu Bussei 7 (4): 227–33. https://doi.org/10.2963/jjtp.7.227.
- [32] Minea, Alina Adriana. 2016. “A Review on the Thermophysical Properties of Water-Based Nanofluids and Their Hybrids.” The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science 39 (1): 35-47.
- [33] Mintsa, Honorine Angue, Gilles Roy, Cong Tam Nguyen, and Dominique Doucet. 2009. “New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids.” International Journal of Thermal Sciences 48 (2): 363-71. https://doi.org/10.1016/j.ijthermalsci. 2008.03.009.
- [34] Murshed, S.M.S., K.C. Leong, and C. Yang. 2005. “Enhanced Thermal Conductivity of TiO2 - Water Based Nanofluids.” International Journal of Thermal Sciences 44 (4): 367-73. https://doi.org/10.1016/j.ijthermalsci.2004.12.005.
- [35] Nfawa, Sadeq R., Abd Rahim Abu Talib, Adi Azriff Basri, and Siti Ujila Masuri. 2021. “Novel Use of MgO Nanoparticle Additive for Enhancing the Thermal Conductivity of CuO/Water Nanofluid.” Case Studies in Thermal Engineering 27 (October): 101279. https://doi.org/ 10.1016/j.csite.2021.101279.
- [36] Niyomvas, Banyat, and Bunjerd Potakarat. 2013. “Performance Study of Cooling Pads.” Advanced Materials Research 664 (February): 931-35. https://doi.org/10.4028/www.scientific.net/AMR.664.931.
- [37] Patel, Hrishikesh E., Sarit K. Das, T. Sundararajan, A. Sreekumaran Nair, Beena George, and T. Pradeep. 2003. “Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects.” Applied Physics Letters 83 (14): 2931-33. https://doi.org/10.1063/1.1602578.
- [38] Pinto, Rodrigo Vidonscky, and Flávio Augusto Sanzovo Fiorelli. 2016. “Review of the Mechanisms Responsible for Heat Transfer Enhancement Using Nanofluids.” Applied Thermal Engineering 108 (September): 720-39. https://doi.org/10.1016/j.applthermaleng.2016.07.147.
- [39] Rajski, Krzysztof, Ali Sohani, Sina Jafari, Jan Danielewicz, and Marderos Ara Sayegh. 2022. “Energy Performance of a Novel Hybrid Air Conditioning System Built on Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler.” Energies 15 (7): 2613. https://doi.org/10.3390/en15072613.
- [40] Ranga Babu, J.A., K. Kiran Kumar, and S. Srinivasa Rao. 2017. “State-of-Art Review on Hybrid Nanofluids.” Renewable and Sustainable Energy Reviews 77 (September): 551-65. https://doi.org/10.1016/j.rser.2017.04.040.
- [41] Sarkar, Jahar, Pradyumna Ghosh, and Arjumand Adil. 2015. “A Review on Hybrid Nanofluids: Recent Research, Development and Applications.” Renewable and Sustainable Energy Reviews 43 (March): 164-77. https://doi.org/10.1016/j.rser.2014.11.023.
- [42] SEELEY INTERNATIONAL. n.d. “Coolerado HMX Indirect Evaporative Cooler.” Dostęp Sierpień 15, 2023. https://www.seeleyinternational.com/us/product/coolerado-hmx-commercial-north-america/.
- [43] Sofia, Evi, Nandy Putra, and Engkos A. Kosasih. 2022. “Development of Indirect Evaporative Cooler Based on a Finned Heat Pipe with a Natural-Fiber Cooling Pad.” Heliyon 8 (12): e12508. https://doi.org/10.1016/j.heliyon.2022.e12508.
- [44] Sun, Tiezhu, Xiang Huang, Yueying Qu, Fenghao Wang, and Yi Chen. 2020. “Theoretical and Experimental Study on Heat and Mass Transfer of a Porous Ceramic Tube Type Indirect Evaporative Cooler.” Applied Thermal Engineering 173 (June): 115211. https://doi.org/10.1016/j.applthermaleng.2020.115211.
- [45] Tariq, Rasikh, Changhong Zhan, Nadeem Ahmed Sheikh, and Xudong Zhao. 2018. “Thermal Performance Enhancement of aCross-Flow-Type Maisotsenko Heat and Mass Exchanger Using Various Nanofluids.” Energies 11 (10): 2656. https://doi.org/10.3390/en11102656.
- [46] Tariq, Rasikh, Changhong Zhan, Xudong Zhao, and Nadeem Ahmed Sheikh. 2018. “Numerical Study of a Regenerative Counter Flow Evaporative Cooler Using Alumina Nanoparticles in Wet Channel.” Energy and Buildings 169 (June): 430-43. https://doi.org/10.1016/j.enbuild.2018.03.086.
- [47] UNNO, Noriyuki, Kazuhisa YUKI, Ryo INOUE, Yasuo KOGO, Jun TANIGUCHI, and Shin-ichi SATAKE. 2020. “Enhanced Evaporation of Porous Materials with Micropores and High Porosity.” Journal of Thermal Science and Technology 15 (1): JTST0007–JTST0007. https://doi.org/10.1299/jtst.2020jtst0007.
- [48] Velasco Gómez, Eloy, Ana Tejero González, and Francisco Javier Rey Martínez. 2012. “Experimental Characterisation of an Indirect Evaporative Cooling Prototype in Two Operating Modes.” Applied Energy 97 (September): 340-46. https://doi.org/10.1016/J.APENERGY.2011.12.065.
- [49] Xu, Peng, Xiaoli Ma, Xudong Zhao, and Kevin S. Fancey. 2016. “Experimental Investigation on Performance of Fabrics for Indirect Evaporative Cooling Applications.” Building and Environment 110 (December): 104-14. https://doi.org/10.1016/j.buildenv.2016.10.003.
- [50] Xuan, Zihao, Yuling Zhai, Mingyan Ma, Yanhua Li, and Hua Wang. 2021. “Thermo-Economic Performance and Sensitivity Analysis of Ternary Hybrid Nanofluids.” Journal of Molecular Liquids 323 (February): 114889. https://doi.org/10.1016/j.molliq.2020.114889.
- [51] Yang, Hongxing, Wenchao Shi, Yi Chen, and Yunran Min. 2021. “Research Development of Indirect Evaporative Cooling Technology: An Updated Review.” Renewable and Sustainable Energy Reviews 145 (July): 111082. https://doi.org/10.1016/j.rser.2021.111082.
- [52] Yeganeh, M., N. Shahtahmasebi, A. Kompany, E.K. Goharshadi, A. Youssefi, and L. Šiller. 2010. “Volume Fraction and Temperature Variations of the Effective Thermal Conductivity of Nanodiamond Fluids in Deionized Water.” International Journal of Heat and Mass Transfer 53 (15-16): 3186-92. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.008.
- [53] Yu, Wei, Huaqing Xie, Lifei Chen, and Yang Li. 2009. “Investigation of Thermal Conductivity and Viscosity of Ethylene Glycol Based ZnO Nanofluid.” Thermochimica Acta 491 (1-2): 92-96. https://doi.org/10.1016/j.tca.2009.03.007.
- [54] Zhu, Guangya, Weijian Chen, Dalin Zhang, and Tao Wen. 2023. “Performance Evaluation of Counter Flow Dew-Point Evaporative Cooler with aThree-Dimensional Numerical Model.” Applied Thermal Engineering 219 (January): 119483. https://doi.org/10.1016/j.applthermaleng.2022.119483.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6f0e9bb-7eee-402c-acf0-85c12c854645