PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing DVA placement using evolutionary algorithms for dynamic beam loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Danamic vibration absorbers (DVAs) are used to suppress the excessive structural response due to dynamic loading. To maximize their effectiveness, the placement and characteristics of DVAs need to be carefully chosen. To address this challenge, a methodology that enables this task to be accomplished by means of an evolutionary algorithm is presented in this paper. A beam subjected to a sequence of forces with random amplitudes, which move at random time instances with a constant velocity, is considered. The beam has either one or a set of two arbitrarily located DVAs. The loading is modeled using a filtered Poisson process, while the DVAs are modeled as single-degree-of-freedom (SDOF) systems. It is shown that the proposed algorithm can serve as a powerful tool when selecting an arrangement of DVAs, in turn effectively mitigating any undesired structural response. Moreover, the optimization of DVAs leads to the asymmetry of the absorber’s position along the length of a bridge’s beam. The obtained results can be used to evaluate the correctness of calculations conducted for the purpose of assessing structural damping requirements.
Wydawca
Rocznik
Strony
167--178
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Frahm H., Device for damping vibrations of bodies. United States Patent (1911), 3576-3580.
  • [2] Ormondroyd J., Den Hartog J.P., The theory of the dynamic vibration absorber, Transactions of ASME, Journal of Applied Mechanics 50 (1928), 9–22.
  • [3] Den Hartog J.P., Mechanical Vibrations, 4th ed., Dover, New York, 1985.
  • [4] Podwórna, M., The aging of a building versus its life cycle with regards to real estate appraisal. Real Estate Management and Valuation 30 (2022) 84-95. https://doi.org/10.2478/remav- 2022-0016.
  • [5] Chen JH., Su MC, Lin SK, Lin WJ, Gheisari M., Smart bridge maintenance using cluster merging algorithm based on self-organizing map optimization, Automation in Construction (2023) 104913, https://doi.org/10.1016/j.autcon.2023.104913.
  • [6] Zhou Y., Sun L., Effects of high winds on a long-span sea-crossing bridge based on structural health monitoring, Journal of Wind Engineering & Industrial Aerodynamics 174 (2018) 260–268, https://doi.org/10.1016/j.jweia.2018.01.001.
  • [7] Wang Q., Zheng Z., Qiao H., De Domenico D., Seismic protection of reinforced concrete continuous girder bridges with inerter-based vibration absorbers, Soil Dynamics and Earthquake Engineering 164 (2023) 107526, https://doi.org/10.1016/j. soildyn.2022.107526.
  • [8] Czaplewski B., Bocian M., Macdonald J. H.G., Calibration of inverted pendulum pedestrian model for laterally oscillating bridges based on stepping behaviour, Journal of Sound and Vibration 572 (2024), 118141, https://doi.org/10.1016/j. jsv.2023.118141.
  • [9] Samani F.S., Pellicano F., Masoumi A., Performances of dynamic vibration absorbers for beams subjected to moving loads. Nonlinear Dynamics 72 (2013), 1-2. DOI 10.1007/s11071- 013-0853-4.
  • [10] Luu M, Zabel V, Könke C., An optimization method of multi-resonant response of high-speed train bridges using TMDs. Finite Elements in Analysis and Design 53 (2012) 13–23, doi:10.1016/j.finel.2011.12.003
  • [11] Herbut A., Rybak J., Brząkała W., On a Sensor Placement Methodology for Monitoring the Vibrations of Horizontally Excited Ground, Sensors 20 (2020), 1938; https://doi. org/10.3390/s20071938.
  • [12] Ma R., Bi K., Hao H., Inerter-based structural vibration control: A state-of-the-art review, Engineering Structures 243 (2021) 112655, https://doi.org/10.1016/j.engstruct.2021.112655.
  • [13] Konar, T., Ghosh, A.D., Flow Damping Devices in Tuned Liquid Damper for Structural Vibration Control: A Review. Archives of Computational Methods in Engineering 28 (2021) 2195–2207. https://doi.org/10.1007/s11831-020-09450-0.
  • [14] Yang D-H., Shin J-H, Lee H.W., Kim S-K., Kwak M-K., Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm, Journal of Sound and Vibration, 392 (2017) 18-30. https://doi. org/10.1016/j.jsv.2016.12.036.
  • [15] Shih M.H., Sung W.P., Parametric Study of Impulse Semi-active Mass Damper with Developing Directional Active Joint, Arabian Journal for Science and Engineering 46, (2021) 10711–10729. https://doi.org/10.1007/s13369-021-05331-1.
  • [16] Billon, K., Zhao, G., Collette, C., Chesné, S. Hybrid Mass Damper, Theoretical and Experimental Power Flow Analysis, Journal of Vibration and Acoustics; 144 (4), (2022) 041003. https://doi.org/10.1115/1.4053480.
  • [17] Antoniadis I.A., Kanarachos S.A., Gryllias K., Sapountzakis I.AE., KDamping: A stiffness based vibration absorption concept, Journal of Vibration and Control, Vol. 24 (2018) 588–606. https://doi: 10.1177/1077546316646514.
  • [18] Alexander N.A., Schilder F., Exploring the performance of a nonlinear tuned mass damper, Journal of Sound and Vibration, Volume 319 (2009) 445-462. https://doi.org/10.1016/j. jsv.2008.05.018.
  • [19] Araz O; Optimization of three element tuned mass damper based on minimization of the acceleration transfer function for seismically excited structures, Journal of the Brazilian Society of Mechanical Sciences and Engineering (2022) 44: 459, doi. org/10.1007/s40430-022-03743-0.
  • [20] Prakash S., Jangid R. S., Optimum parameters of tuned mass damper - inerter for damped structure under seismic excitation, International Journal of Dynamics and Control (2022) 10:1322– 1336 https://doi.org/10.1007/s40435-022-00911-x.
  • [21] Shen Y., Peng H., Li X., Yang S., Analytically optimal parameters of dynamic vibration absorber with negative stiffness, Mechanical Systems and Signal Processing 85 (2017) 193–203, https://doi.org/10.1016/j.ymssp.2016.08.018.
  • [22] Issa J.S., Vibration absorbers for simply supported beams subjected to constant moving loads. Proceedings of the Institution of Mechanical Engineers Part K Journal of Multi-body Dynamics 226(4) (2013) 398-404, https://doi. org/10.1177/1464419312450652.
  • [23] Soong T.T., Grigoriu M., Random vibration of mechanical and structural systems, PTR Prentice-Hall, Inc, 1993.
  • [24] Lin Y.K., Cai G.Q., Probabilistic structural dynamics: Advanced theory and applications, McGraw-Hill, 1995.
  • [25] Samani F.S., Pellicano F., Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers. Journal of Sound and Vibration 325. (2009) 742-754. doi: 10.1016/j.jsv.2009.04.011.
  • [26] Wang J.F., Lin C.C., Chen B.L., Vibration suppression for high speed railway bridges using tuned mass dampers, International Journal of Solids and Structures (2003) 40:465– 491, https://doi.org/10.1016/S0020-7683(02)00589-9.
  • [27] Samani FS, Pellicano F, Masoumi A. Performances of dynamic vibration absorbers for beams subjected to moving loads, Nonlinear Dynamics 73(1-2) (2013),1065-79, DOI 10.1007/ s11071-013-0853-4.
  • [28] Adam C, Di Lorenzo S, Failla G, Pirrotta A. On the moving load problem in beam structures equipped with tuned mass dampers. Meccanica 52(13), (2017), 3101-15, DOI 10.1007/ s11012-016-0599-4.
  • [29] Pisal A. Y., Jangid R. S., Vibration control of bridge subjected to multi-axle vehicle using multiple tuned mass friction dampers, International Journal of Advanced Structural Engineering (2016) 8:213–227 DOI 10.1007/s40091-016-0124-y.
  • [30] Podwórna M., Grosel J., Optimisation of the parameters of a vibration damper installed on a historic bridge. Architecture Civil Engineering Environment, 16, 4, pp. 93-101 (2023). https://doi.org/10.2478/acee-2023-0053.
  • [31] Kahya V, Araz O., Series multiple tuned mass dampers for vibration control of high-speed railway bridges. In: Zingoni A (ed). Insights and Innovations in Structural Engineering, Mechanics and Computation. 1st ed. London: CRC Press, (2016) 143-148, DOI: 10.1201/9781315641645.
  • [32] Wolfram Mathematica 13. Wolfram Research ©Copyright 1988- 2023.
  • [33] Araz O, Kahya V, Optimization of multiple tuned mass dampers for a two-span continuous railway bridge via differential evolution algorithm, Structures 39 (2022) 29–38, doi. org/10.1016/j.istruc.2022.03.021.
  • [34] Storn R, Price K., Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization 11(4), (1997), 341–59, DOI10.1023/A:1008202821328.
  • [35] Michalewicz Z., Genetic Algorithm + Data Structures = Evolution Programs, Springer-Verlag Berlin, 1992.
  • [36] Goldberg, D. E., Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley, 1989.
  • [37] Grosel J., Podwórna M., Optimisation of absorber parameters in the case of stochastic vibrations in a bridge with a deck platform for servicing pipelines. Studia Geotechnica et Mechanica 43 (2021) 1–9. doi:10.2478/sgem-2021-0030.
  • [38] Podwórna M., Grosel J., Vibration absorber as a kind of reinforcement of a structure subjected to dynamic excitation. Materialy Budowlane (in polish) (2022) DOI: 10.15199/33.2022.11.31.
  • [39] Moghaddas M, Esmailzadeh E, Sedaghati R, Khosravi P., Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper, Journal of Vibration and Control 18(6), (2011), 757-73. DOI: 10.1177/1077546311404267.
  • [40] Weber B., Feltrin G., Assessment of long-term behaviour of tuned mass dampers by system identification, Engineering Structures 32 (2010) 3670–3682. doi:10.1016/j. engstruct.2010.08.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6e9e4d9-f6f8-4c27-9f30-cb9f5a462e3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.