PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microplastics from Plastic Waste as a Limitation of Sustainability of the Environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The massive emergence of plastics has contributed to their widespread use in everyday life. Unfortunately, the lack of appropriate technologies for processing these materials has contributed to environmental pollution by plastic particles. This study investigated the possibility of obtaining nanoparticles from selected plastics such as polyethylene and polyethylene terephthalate. Polyethylene was obtained from plastic bag waste, and polyethylene terephthalate was from crushed plastic bottles of mineral water. The first stage of nanoparticle production was to grind the collected used plastic waste, i.e., plastic bags and plastic bottles, to the smallest possible size using a cutting mill. Next, the waste was ground in a planetary-ball mill and then homogenised in a homogeniser. The particle size distribution of the obtained particles for selected waste plastics was examined using the Dynamic Light Scattering (DLS) method. The objective of the work was achieved – as a result of the performed procedures, nanoparticles of waste plastics were obtained. The following average sizes for particular materials were obtained: plastic bottles (PET) 212.81 nm, plastic bags (PE) 208.14 nm, and smaller particles, e.g. 27.74 nm.
Rocznik
Tom
Strony
367--373
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Faculty of Natural and Technical Sciences, John Paul II Catholic University of Lublin, Poland
  • Faculty of Environmental and Power Engineering, Cracow University of Technology, Poland
  • Faculty of Environmental and Power Engineering, Cracow University of Technology, Poland
  • Faculty of Natural and Technical Sciences, John Paul II Catholic University of Lublin, Poland
  • Faculty of Natural and Technical Sciences, John Paul II Catholic University of Lublin, Poland
  • Faculty of Engineering Sciences, State University of Applied Sciences in Nowy Sącz, Poland
  • Faculty of Natural and Technical Sciences, John Paul II Catholic University of Lublin, Poland
  • Department of Innovation and Safety Management Systems, Faculty of Management, Czestochowa University of Technology, Poland
Bibliografia
  • Alimi, O.S., Budarz, J.F., Hernandez, L.M., Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol., 52, 1704-1724. https://doi.org/10.1021/acs.est.7b05559
  • Allan, J., Belz, S., Hoeveler, A., Hugas, M., Okuda, H., Patri, A., Rauscher, R., Silva, P., Slikker, W., Sokull-Kluettgen, B., Tong, W., Anklam, E. (2021). Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regulatory Toxicology and Pharmacology, 122, 104885. https://doi.org/10.1016/j.yrtph.2021.104885
  • Alwaeli, M., Nadziakiewicz, J. (2018). Recycling of scale and steel chips waste as a partial replacement of sand in concrete. Constr. Build. Mater., 28, 157-163. https://doi.org/10.1016/j.conbuildmat.2011.08.047
  • Alwaeli, M. (2009). Recycling of packaging waste in Poland. Waste Management, 29(12), 3054-3055. https://doi.org/10.1016/j.wasman.2009.09.004
  • Bencsik, A., Lestaevel, P., Canu, I.G. (2018). Nano- and neurotoxicology: An emerging discipline. Progress in Neurobiology, 160, 45-63. https://doi.org/10.1016/j.pneurobio.2017.10.003
  • Bouakkaz, R., Salhi, F., Khelili, Y., Quazzazi, M., Talbi, K. (2017). Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime. Archives of Thermodynamics, 38(2), 3-20. https://doi.org/10.1515/aoter-2017-0008
  • Ciuła, J., Kowalski, S., Wiewiórska, I. (2023). Pollution Indicator of a Megawatt Hour Produced in Cogeneration – the Efficiency of Biogas Purification Process as an Energy Source for Wastewater Treatment Plants. Journal of Ecological Engineering, 24(3), 232-245. https://doi.org/10.12911/22998993/158562
  • Croxatto Vega, G., Gross, A., Birkved, M. (2021). The impacts of plastic products on air pollution-A simulation study for advanced life cycle inventories of plastics covering secondary microplastic production. Sustainable Production and Consumption, 28, 848-865. https://doi.org/10.1016/j.spc.2021.07.008
  • Demets, R., Van Kets, K., Huysveld, S., Dewulf, J., De Meester, S., Ragaert, K. (2021). Addressing the complex challenge of understanding and quantifying substitutability for recycled plastics. Resources, Conservation & Recycling, 174, 105826, 1-13. https://doi.org/10.1016/j.resconrec.2021.105826
  • Ekrami, E., Pouresmaieli, M., Hashemiyoon, E.S., Noorbakhsh, N., Mahmoudifard, M. (2022). Nanotechnology: A sustainable solution for heavy metals remediation. Environmental Nanotechnology, Monitoring & Management, 18, 100718. https://doi.org/10.1016/j.enmm.2022.100718
  • El-Baz A., Mokhtar M., Abdo A. (2023). Effect of Magnetite Oxide Nanoparticles and Tungsten Oxide Nanoparticles on Phosphate Removal from Aqueous Solutions. Journal of Ecological Engineering, 24(3), 287-303. https://doi.org/10.12911/22998993/158563
  • Gaska, K., Generowicz, A., Gronba-Chyła, A., Ciuła, J., Wiewiórska, I., Kwaśnicki, P., Mala, M., Chyła, K. (2023). Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change. Energies, 16(15), 5732. https://doi.org/10.3390/en16155732
  • Gaylarde, C.C., Baptista Neto, J.A., Monteiro da Fonseca, E. (2021). Nanoplastics in aquatic systems - are they more hazardous than microplastics? Environmental Pollution, 272, 115950, 1-10. https://doi.org/10.1016/j.envpol.2020.115950
  • Grąz, K., Gronba-Chyła, A., Chyła, K., (2023). Microplastics foundin compost as a barrier to the circular economy (CE). Przemysł Chemiczny, 102(4), 381-383. https://doi.org/10.15199/62.2023.4.7
  • Grąz, K., Generowicz, A., Kwaśny, J. (2022). Nanoparticles in surface water. Przemysł Chemiczny, 101(1). https://doi.org/63 10.15199/62.2022.1.8
  • Gronba-Chyła, A., Generowicz, A., Kwaśnicki, P., Cycoń D., Kwaśny, J., Grąz, K., Gąska, K., Ciuła, J. (2022). Determining the Effectiveness of Street Cleaning with the Use of Decision Analysis and Research on the Reduction in Chloride in Waste. Energies, 15, 3538. https://doi.org/10.3390/en15103538
  • Hamdan, M.A., Hajkhalil, R., Abdelhafez, E., Ajib, S. (2023). The Effect of Nanomaterial Type on Water Disinfection Using Data Mining. Journal of Ecological Engineering, 24(4), 244-251. https://doi.org/10.12911/22998993/160093
  • Jemec Kokalj, A., Hartmann, N.B., Drobne, D., Potthoff, A., Kühnel, D. (2021). Quality of nanoplastics and microplastics ecotoxicity studies: Refining quality criteria for nanomaterial studies. Journal of Hazardous Materials, 415, 125751, 1-12. https://doi.org/10.1016/j.jhazmat.2021.125751
  • Jeon, Y., Kim, D., Kwon, G., Lee, K., Oh, Ch.-S., Kim, U-J., You, J. (2021). Detection of nanoplastics based on surface-enhanced Raman scattering with silver nanowire arrays on regenerated cellulose films. Carbohydrate Polymers, 272, 118470, 1-8. https://doi.org/10.1016/j.carbpol.2021.118470.
  • Khoironi, A., Anggoro, S., Sudarno, S. (2019). Evaluation of the Interaction Among Microalgae Spirulina sp, Plastics Polyethylene Terephthalate and Polypropylene in Freshwater Environment. Journal of Ecological Engineering, 20(6), 161-173. https://doi.org/10.12911/22998993/108637
  • Kihara, S., Köper, I., Mata, J.P., McGillivray, D.J. (2021). Reviewing nanoplastic toxicology: It's an interface problem. Advances in Colloid and Interface Science, 288, 102337, 1-12. https://doi.org/10.1016/j.cis.2020.102337
  • Klotz, M., Haupt, M., Hellweg, S. (2022). Limited utilisation options for secondary plastics may restrict their circularity. Waste Management, 141, 251-270. https://doi.org/10.1016/j.wasman.2022.01.002
  • Kumar Das, R., Sanyal, D., Kumar, P., Pulicharla, R., Kaur Brar, S. (2021). Science-society-policy interface for microplastic and nanoplastic: Environmental and biomedical aspects. Environmental Pollution, 290, 117985, 1-17. https://doi.org/10.1016/j.envpol.2021.117985
  • Kwaśny, J., Balcerzak, W. (2017). Characteristics of selected methods for the synthesis of nanometric zirconium oxide – critical review. Technical Transactions, 114(2), 105-118. https://doi.org/10.4467/2353737XCT.17.021.6214
  • Li, Y., Liu, Z., Yang, Y., Jiang, Q., Wu, D., Huang, Y. Jiao, H., Chen, Q., Huang, Y., Zhao. (2021). Effects of nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium nipponense). Environmental Pollution, 268, 115890, 1-10. https://doi.org/10.1016/j.envpol.2020.115890
  • Magrì, D., Veronesi, M., Sanchez-Moreno, P., Tolardo, V., Bandiera, T., Pompa, P.P., Athanassiou, A., Fragouli, D. (2021). PET nanoplastics interactions with water contaminants and their impact on human cells. Environmental Pollution, 271, 116262, 1-10. https://doi.org/10.1016/j.envpol.2020.116262
  • Mamatha, S.U., K. Ramesh Babu, K., Prasad, P.D., Raju, C.S.K., Varma, C.V.K. (2020). Mass transfer analysis of two-phase flow in a suspension of microorganisms. Archives of Thermodynamics, 41(1), 175-192. https://doi.org/10.24425/ather.2020.132954
  • Mateos-Cardenas, A., van Pelt, F.N.A.M., O’Halloran, J., Jansen, M.A.K. (2021). Adsorption, uptake and toxicity of micro- and nanoplastics: Effects on terrestrial plants and aquatic macrophytes. Environmental Pollution, 284, 117183, 1-10. https://doi.org/10.1016/j.envpol.2021.117183
  • Materić, D., Ludewig, E., Brunner, D., Rockmann, T., Holzinger, R. (2021). Nanoplastics transport to the remote, high-altitude Alps. Environmental Pollution, 288, 117697, 1-11. https://doi.org/10.1016/j.envpol.2021.117697
  • Matthews, S., Mai, L., Jeong, C.-B., Lee, J.-S., Zeng, E.Y., Genbo Xu, E. (2021). Key mechanisms of micro- and nanoplastic (MNP) toxicity across taxonomic groups. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 47, 109056, 1-15. https://doi.org/10.1016/j.cbpc.2021.109056
  • Mofijur, M., Ahmed, S.F., Ashrafur Rahman, S.M., Yasir Arafat Siddiki, SK., Saiful Islam, A.B.M., Shahabuddin, M., Ong, H.Ch., Mahlia, T.M.I., Djavanroodi, F., Show, P.L. (2021). Source, distribution and emerging threat of micro- and nanoplastics to marine organism and human health: Socio-economic impact and management strategies. Environmental Research, 195, 110857, 1-19. https://doi.org/10.1016/j.envres.2021.110857
  • Morgana, S., Casentini, B., Amalfitano, S. (2021). Uncovering the release of micro/nanoplastics from disposable face masks at times of COVID-19. Journal of Hazardous Materials, 419, 126507, 1-8. https://doi.org/10.1016/j.jhazmat.2021.126507
  • Roshanzadeh, A., Oyunbaatar, N.-E., Ehteshamzadeh Ganjbakhsh, S., Park, S., Kim, D.-S., Kanade, P.P., Lee, S., Lee, D-W., Kim ,E-S. (2021). Exposure to nanoplastics impairs collective contractility of neonatal cardiomyocytes under electrical synchronisation. Biomaterials, 278, 121175, 1-16. https://doi.org/10.1016/j.biomaterials.2021.121175
  • Schwaferts, C., Niessner, R., Elsner, M., Ivleva, N.P. (2019). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. Trends in Analytical Chemistry, 112, 52-65. https://doi.org/10.1016/j.trac.2018.12.014
  • Shamsuyeva, M., Endres, H-J. (2021). Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardisation and market. Composites Part C: Open Access 6, 100168, 1-16. https://doi.org/10.1016/j.jcomc.2021.100168
  • Shen, M., Zhang, Y., Zhu, Y., Song, B., Zeng, G., Hu, D., Wen, X., Ren, X. (2019). Recent advances in toxicological research of nanoplastics in the environment: A review. Environmental Pollution, 252, 511-521. https://doi.org/10.1016/j.envpol.2019.05.102
  • Stapleton, P. (2021). Micro-and nanoplastic transfer, accumulation, and toxicity in humans. Current Opinion in Toxicology, 28, 62-69. https://doi.org/10.1016/j.cotox.2021.10.001
  • Sutisna, M.R., Wibowo, E., Khairurrijal M.A. (2017). Coating TiO2 nanoparticles on the surface of transparent plastic granules using combined electrostatic and heating methods for the photocatalytic degradation of organic pollutants in water. Environmental Nanotechnology, Monitoring & Management, 8, 1-10. https://doi.org/10.1016/j.enmm.2017.04.002
  • Vasiliev, L., Grakovich, L., Rabetsky, M., Zhuravlyov, A., Vassiliev, Jr. L. (2018). Flat polymer loop thermosyphons. Archives of Thermodynamics, 39(1). https://doi.org/75-90. 10.1515/aoter-2018-0004
  • Wang, Z., Saade, N.K., Ariya, P.A. (2021). Advances in Ultra-Trace Analytical Capability for Micro/Nanoplastics and Water-Soluble Polymers in the Environment: Fresh Falling Urban Snow. Environmental Pollution, 276, 116698, 1-13. https://doi.org/10.1016/j.envpol.2021.116698
  • Yang, W., Gao, P., Ma, G., Huang, J., Wu, Y., Wan, L, Ding, H, Zhang, W. (2021). Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure. Environmental Pollution, 284, 117413, 1-13. https://doi.org/10.1016/j.envpol.2021.117413
  • Yin, L., Wen, X., Huang, D., Du, C., Deng, R., Zhou, Z., Tao, J., Li, R., Zhou, W., Wang, Z., Chen, H. (2021). Interactions between microplastics/nanoplastics and vascular plants. Environmental Pollution. 290, 117999, 1-11. https://doi.org/10.1016/j.envpol.2021.117999
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6e8ba5d-e2d1-4de4-a54d-36ed35d50be7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.