PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variational Bayesian inversion for microwave breast imaging

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microwave imaging is considered as a nonlinear inverse scattering problem and tackled in a Bayesian estimation framework. The object under test (a breast affected by a tumor) is assumed to be composed of compact regions made of a restricted number of different homogeneous materials. This a priori knowledge is defined by a Gauss-Markov-Potts distribution. First, we express the joint posterior of all the unknowns; then, we present in detail the variational Bayesian approximation used to compute the estimators and reconstruct both permittivity and conductivity maps. This approximation consists of the best separable probability law that approximates the true posterior distribution in the Kullback-Leibler sense. This leads to an implicit parametric optimization scheme which is solved iteratively. Some preliminary results, obtained by applying the proposed method to synthetic data, are presented and compared with those obtained by means of the classical contrast source inversion method.
Rocznik
Strony
199--210
Opis fizyczny
Bibliogr. 27 poz., il., tab., wykr.
Twórcy
autor
  • Laboratoire des Signaux et Systèmes (L2S, UMR 8506: CNRS – Centrale-Supélec – Univ Paris-Sud) 3 rue Joliot-Curie, F-91190 Gif-sur-Yvette, France
autor
  • Univ Grenoble-Alpes, GIPSA-Lab 11 rue des mathématiques, Grenoble Campus, BP 46, F-38000 Grenoble, France
autor
  • Laboratoire des Signaux et Systèmes (L2S, UMR 8506: CNRS – Centrale-Supélec – Univ Paris-Sud) 3 rue Joliot-Curie, F-91190 Gif-sur-Yvette, France
  • Laboratoire des Signaux et Systèmes (L2S, UMR 8506: CNRS – Centrale-Supélec – Univ Paris-Sud) 3 rue Joliot-Curie, F-91190 Gif-sur-Yvette, France
Bibliografia
  • [1] H. Ayasso. Une approche bayésienne de l’inversion. Application à l’imagerie de diffraction dans les domaines micro-onde et optique. Ph.D. thesis, Université Paris-Sud 11, 2010.
  • [2] H. Ayasso, B. Duchêne, A. Mohammad-Djafari. Optical diffraction tomography within a variational Bayesian framework. Inverse Problems in Science and Engineering, 20(1): 59–73, 2012.
  • [3] H. Ayasso, B. Duchêne, A. Mohammad-Djafari. MCMC and variational approaches for Bayesian inversion in diffraction imaging. In: J.-F. Giovannelli, J. Idier [Eds.], Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing, 201–224, Wiley-ISTE, 2015.
  • [4] V. Beffara, H. Duminil-Copin. The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1. Probability Theory and Related Fields, 153(3–4): 511–542, 2012.
  • [5] W.C. Chew. Waves and fields in inhomogeneous media. IEEE Press, New York, 1995.
  • [6] D. Colton, R. Kress. Inverse acoustic and electromagnetic scattering theory. Springer, New York, 1992.
  • [7] O. Féron, B. Duchêne, A. Mohammad-Djafari. Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data. Inverse Problems, 21(6): S95–S115, 2005.
  • [8] A.E. Fouda, F.L. Teixeira. Ultra-wideband microwave imaging of breast cancer tumors via Bayesian inverse scattering. Journal of Applied Physics, 115(6): 064701, 2014.
  • [9] A. Fraysse, T. Rodet. A measure-theoretic variational Bayesian algorithm for large dimensional problems. SIAM Journal on Imaging Sciences, 7(4): 2591–2622, 2014. 210 L. Gharsalli, H. Ayasso, B. Duchêne, A. Mohammad-Djafari
  • [10] S.C. Hagness, E.C. Fear, A. Massa. Guest editorial: special cluster on microwave medical imaging. IEEE Antennas and Wireless Propagation Letters, 11: 1592–1597, 2012.
  • [11] R.F. Harrington. Field computation by moment methods. The Macmillan Company, New York, 1968.
  • [12] A.M. Hassan, M. El-Shenawee. Review of electromagnetic techniques for breast cancer detection. IEEE Reviews in Biomedical Engineering, 4: 103–118, 2011.
  • [13] G.E. Hinton, D. van Camp. Keeping the neural networks simple by minimizing the description length of the weights. In: L. Pitt [Ed.], Proceedings of the 6th Annual Conference on Computational Learning Theory, 5–13, ACM, New York, 1993.
  • [14] J. Idier [Ed.]. Bayesian approach to inverse problems. Wiley-ISTE, 2008.
  • [15] W.T. Joines, R.L. Jirtle, M.D. Rafal, D.J. Schaefer. Microwave power absorption differences between normal and malignant tissue. International Journal of Radiation Oncology • Biology • Physics, 6(6): 681–687, 1980.
  • [16] M. Lazebnik, L. McCartney, D. Popovic, C.B. Watkins, M.J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J.H. Booske, M. Okoniewski, S.C. Hagness. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Physics in Medicine and Biology, 52(10): 2637–2656, 2007.
  • [17] M. Lazebnik, M. Okoniewski, J.H. Booske, S.C. Hagness. Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies. IEEE Microwave and Wireless Components Letters, 17(12): 822–824, 2007.
  • [18] M. Lazebnik, D. Popovic, L. McCartney, C.B. Watkins, M.J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T.M. Breslin, W. Temple, D. Mew, J.H. Booske, M. Okoniewski, S.C. Hagness. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign, and malignant breast tissues obtained from cancer surgeries. Physics in Medicine and Biology, 52(20): 6093–6115, 2007.
  • [19] D.J.C. Mackay. Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge, 2003.
  • [20] J.B. MacQueen. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1: 281–297, 1967.
  • [21] A. Mohammad-Djafari. Gauss-Markov-Potts priors for images in computer tomography resulting to joint optimal reconstruction and segmentation. International Journal of Tomography and Statistics, 11: 76–92, 2008.
  • [22] V. Smídl, A. Quinn. The variational Bayes method in signal processing. Springer Verlag, Berlin, 2006.
  • [23] C-T. Tai. Dyadic green functions in electromagnetic theory. IEEE Press, New York, 1993.
  • [24] M.E. Tipping. Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 1: 211–244, 2001.
  • [25] P.M. van den Berg, R.E. Kleinman. A contrast source inversion method. Inverse Problems, 13(6): 1607–1620, 1997.
  • [26] P.M. van den Berg, A. van Broekhoven, A. Abubakar. Extended contrast source inversion. Inverse Problems, 15(5): 1325–1344, 1999.
  • [27] E. Zastrow, S.K. Davis, M. Lazebnik, F. Kelcz, B.D. Van Veem, S.C. Hagness. Database of 3D grid-based numerical breast phantoms for use in computational electromagnetics simulations. University of Wisconsin-Madison, Online, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6e2548a-7934-48db-a046-4c18113b06e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.