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Abstract: This paper presents a discussion on the accuracy of the method of determining the thermal diffusivity of solids using the solution 
of the inverse heat conduction equation. A new measurement data processing procedure was proposed to improve the effectiveness  
of the method. Using the numerical model, an analysis of the sensitivity of the method of thermal diffusivity determination to changes  
in operational and environmental parameters of the test was carried out. The obtained results showed that the method was insensitive  
to the parameters of the thermal excitation impulse, the thickness of the tested sample, and the significant influence of convection cooling 
on its accuracy. The work was completed with the formulation of general conclusions concerning the conditions for determining the thermal 
diffusivity of materials with the use of the described method. 
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1. INTRODUCTION 

Thermal diffusivity or thermal diffusion coefficient is a parame-
ter describing the heat flow, and in fact, the movement of the 
isothermal surface in the material, occurring, inter alia, in the 
differential equation of the Fourier heat conduction: 

∂𝑇

∂𝑡
= 𝑘∇2𝑇, (1) 

where: k -  thermal diffusivity, T -  temperature, t – time, ∇2 – 
Laplacian. The thermal diffusion coefficient combines other ther-
mal material properties, i.e. heat conduction coefficient λ, specific 
heat cp and density ρ : 

𝑘 =
𝜆

𝑐𝑝𝜌
 (2) 

In simulation tests carried out with the use of analytical or nu-
merical models, the key issue is the correct determination of the 
properties of materials. Even the most perfect calculation model 
will not allow for obtaining reliable results without correct input 
data, including material properties. The importance of this issue is 
evidenced by the multitude of methods for experimentally deter-
mining the properties of materials, their improvement and the 
search for new ones. In the case of thermal diffusivity, its value for 
a given material can be determined using the Angström method 
[1], which links the value of the thermal diffusion coefficient with 
electrical conductivity, several impulse methods. The first paper 
[2] presents a method of heating one surface of an isolated plane-
parallel sample with a pulse of light. Based on the time t1/2 , reach-
ing half of the maximum value of the temperature on the second 
surface of the sample, the value of the thermal diffusion coefficient 
was determined using a simple empirical dependence. In the work 
[3] an analytical solution to the problem of heat conduction for a 
cylindrical sample after being forced by a heat impulse was pro-

posed. These results were used in the work [4] to increase the 
accuracy of the method of determining thermal diffusivity during 
heating with laser radiation. This method was modified and devel-
oped in the works [5, 6, 7] and to this day this subject is the focus 
of researchers [8, 9]. 

This paper presents an analysis of the accuracy of one of the 
methods of determining thermal diffusivity [10]. This method is 
based on the solution to the problem of inverse heat conduction 
by impulse heating of a flat sample, which is contrary to the previ-
ously described method, where it does not require special equip-
ment, complicated sample preparation or test conditions. The 
simplicity of the method is counterbalanced by some simplifica-
tions that may cause inaccuracies. This study aims to investigate 
the potential causes of inaccuracies in the thermal diffusivity 
determination procedure and their impact on the obtained results. 

2. THEORY OF THE METHOD OF DETERMINING THERMAL 
DIFFUSIVITY 

Consider an infinite plate (Fig. 1) made of homogeneous, iso-
tropic material of constant thickness g subjected to impulse heat-
ing on the wall x = 0. It is assumed that the total energy of the 
pulse with the surface flux density q is absorbed by the plate and 
there is no heat exchange with the environment. 

The heat conduction equation for this one-dimensional prob-
lem can be written as follows: 

∂𝑇

∂𝑡
= 𝑘

∂2𝑇

∂𝑥2
+

1

𝜌𝑐𝑝

𝑞, (3) 

The initial boundary conditions for a given case are the initial 
temperature T0 , equal to the ambient temperature Ta , the thermal 
pulse q = q(t) with a rectangular time course and duration tf : 
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𝑇 = 𝑇0:    𝑡 = 0,

𝐾
∂𝑇

∂𝑥
|

𝑥=0
= {

𝑞(𝑡):    0 ≤ 𝑡 ≤ 𝑡𝑓,

0:    𝑡 > 𝑡𝑓,

∂𝑇

∂𝑥
|

𝑥=0
=

∂𝑇

∂𝑥
|

𝑥=𝑔
= 0:    𝑡 > 0.

 (4) 

 
Fig. 1. Diagram of an infinite plate of thickness g 

The solution to the boundary-initial problem of the heat con-
duction equation (3), (4) for the surface x = g with the assumptions 
made regarding the shape of the heating function q(t) and the 
short excitation time tf and taking into account only one segment 
of the asymptotic series, it takes the form [10]: 

𝑇(𝑡, 𝑥 = 𝑔) = 𝑇∞ − 2(𝑇∞ − 𝑇0)exp (−
π2𝑘

𝑔2 𝑡), (5) 

where: T∞ -  maximum surface temperature x = g: 

𝑇∞ = 𝑇(𝑡 → ∞). (6) 

When we logarithm the Eq. (5) we get the linear function of time: 

ln[𝑇∞ − 𝑇(𝑡)] = −𝐴𝑡 + ln2(𝑇∞ − 𝑇0), (7) 

with the directional coefficient: 𝐴 =
𝜋2𝑘

𝑔2 . (8) 

Eq. (5) shows a linear function of the temperature reached on 
the surface x = g of the plate subjected to impulse heating on the 
surface x = 0. It is worth noting that, with the assumptions made, it 
does not depend on the conditions of thermal excitation q(t) and 
knowing the value of the directional coefficient A of the Eq. (7) it is 
easy to determine the value of the required thermal diffusion 
coefficient: 

𝑘 =
𝑔2𝐴

π2 . (9) 

Experimental determination of the value of the thermal diffu-
sion coefficient of the sample material based on solving the prob-
lem of inverse heat conduction consists of the following proce-
dures: 

 measuring the surface temperature of the plate x = g during 
impulse heating of the surface x = 0 until reaching the steady 
state; the results of the measurements are the temperature 
values for discrete-time values, i.e. T(t) (Fig. 2); 

 determination of the temperature T∞ and calculation of the 
value of ln[T∞ -  T(t)] (Fig. 3); under real conditions, i.e. under 
conditions of convection, take: 

𝑇∞ = max{𝑇(𝑡):    𝑡 > 0}. (10) 

 determination of the directional coefficient A of the Eq. (7) by a 
linear approximation of the dependence ln[T∞ -  T(t)]; 

 determination of the value of the thermal diffusion coefficient 
k based on the dependence (9). 
The above-mentioned results of temperature measurements 

during impulse heating (Fig. 2) and an illustration of the linear 
approximation process (Fig. 3) were made for a sample made of 
composite brake material. A flash lamp with a maximum flash 
energy of 6,000 J and a flash duration of 0.2 s was used as a heat 
source. A Cedip Titanium 560 M thermal imaging camera was 
used to measure the surface temperature of the plate. Visible in 
Fig. 2 the temperature peak corresponds to the moment when the 
flash was triggered (t = 0). The geometrical features of the sam-
ple, material properties and test conditions are presented in 
Tab. 1. 

 
Fig. 2. Temperature increase on the back of the sample during  

   impulse heating 

 
Fig. 3. Illustration of the linear approximation procedure  

 to determine the coefficient A and the thermal diffusivity  
 value k 
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Tab. 1. Geometric features and material properties of a material sample 

Characteristic Value 

Plate thickness g 1.5 mm 

Plate material density ρ 1,930 kg/m3 

Specific heat capacity of the plate cp 870 J/(kg*K) 

Start/ambient temperature T0 23,375C. 

Maximum temperature T∞ 24,875C. 

Duration of the heat pulse tf 0.2 s 

The accuracy of determining the value of the thermal diffusion 
coefficient based on the above-described procedure is influenced 
by several factors related to the assumed model of the heat con-
duction problem (e.g. assumption of no heat transfer), simplifica-
tions of the solution to the inverse problem (one segment of the 
solution series has been taken into account), the conditions for 
carrying out measurements (other than the rectangular shape of 
the heating function) and the method of processing measurement 
data. Therefore, several questions arise regarding the model and 
procedure of the experimental determination of the k coefficient 
based on a solution to the inverse problem of heat conduction: 
1. In Fig. 3 it can be seen that the nature of the dependence 

ln[T∞ -  T(t)] in its initial and final interval is far from linear. Us-
ing the entire available range of measurement data for linear 
approximation will distort the results obtained. Relying on a 
subjective evaluation of what range of data to include in a lin-
ear approximation can be unreliable. Therefore, the question 
arises, what range of measurement data Δt = tn -  tm should be 
used in the procedure to ensure the best quality of linear ap-
proximation and accuracy of k coefficient determination? 

2. The issue of the shape of the impulse heating function q(t) is 
considered extremely important in the literature. However, the 
dependencies presented above show that the parameters of 
the thermal excitation pulse, apart from the requirement of 
short duration, do not affect the determined value of the ther-
mal diffusion coefficient. It should be investigated whether the 
method of exciting a heat wave in the material affects the re-
sults of the thermal diffusivity determination method. 

3. The next element of the model that requires analysis in terms 
of the influence on the accuracy of the method is the sample 
thickness g. 

4. The assumption of the lack of heat exchange between the 
sample of the tested material and the environment after the 
completion of the impulse heating seems to be the greatest 
source of method inaccuracy. Therefore, it would be neces-
sary to investigate how serious the errors are and how to min-
imize them. 
In the next chapter, an algorithm will be presented that en-

sures optimal conditions for linear approximation for the accuracy 
of thermal diffusivity determination. The analysis of the remaining 
issues, specified in points 2–4, will be carried out using the nu-
merical model of the problem, using the finite element method. 

3. LINEAR APPROXIMATION OF MEASUREMENT DATA  
AND CALCULATION RESULTS 

The first issue to be considered is to ensure reproducible con-
ditions for the processing of measurement data or the results of 
numerical calculations. Fig. 3 shows that to find the value of the 
directional coefficient of the line Eq. (7) for the linear approxima-
tion, only the interval of dependence ln[T∞ -  T(t)] with linear char-

acteristics should be used. Part of the data corresponding to the 
beginning and end of the impulse heating process of the tested 
material sample should be eliminated from the approximation 
task.  

This task will be performed with the procedure looking for 
such a time interval <tm, tn>, for which the quality parameter of the 
linear approximation of the dependence ln[T∞ -  T(t)] reaches its 
maximum value. The Pearson linear correlation coefficient will be 
used as a parameter for assessing the quality of the linear approx-
imation: 

𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 ∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

, (11) 

where xi, yi are elements of correlated sets. For the case in ques-
tion, these sets are the measured data: 

𝑥𝑖 = ln[𝑇∞ − 𝑇(𝑡𝑖)] (12) 

and the values of the approximation function for the same values 
of time tand : 

𝑦
𝑖

= −𝐴 ⋅ 𝑡𝑖 + ln2(𝑇∞ − 𝑇0) (13) 

𝑥̅and𝑦̅ are the mean values of the correlated sets: 

𝑥̅ =
1

𝑛−𝑚
∑ ln[𝑇∞ − 𝑇(𝑡𝑖)]𝑛

𝑖=𝑚 , 𝑦̅ =
1

𝑛−𝑚
∑ (𝐴 ⋅ 𝑡𝑖 + 𝐵)𝑛

𝑖=𝑚 .

 (14) 

 
Fig. 4. The maximum value of the linear correlation coefficient r  

 (a) and the value of the directional coefficient A and the value  
  of  the thermal diffusion coefficient k (b) depending on the number  
  of measurement data points used in the approximation 

An example of searching for optimal approximation conditions 
is presented in Fig. 4. The highest quality of linear approximation 
(r = 1) is achieved by definition for each pair of data points (n -  m 
= 2, Fig. 4a). Taking into account more points, the value of the 
correlation coefficient r decreases sharply and then increases 
again reaching its maximum at n -  m = 56 (rmax = 0.998) for the 
time interval from tm = 0.54s to tn = 1.66s (Fig. 3). 

Picture Fig. 4b shows the value of the coefficient A of the line-
ar approximating function and the value of the thermal diffusion 

 r  
 

1sA

 
 
 

2m

s
k

n mn m

k

A



Adam Adamowicz                            DOI  10.2478/ama-2022-0048 
Determination of Thermal Diffusivity Values Based on The Inverse Problem of Heat Conduction – Numerical Analysis 

402 

coefficient k determined based on the approximation. Taking into 
account the data range optimal for the quality of the approxima-

tion, the obtained value was A = 1.8984 s1 and 

k = 4.32793 · 107 m2   s1. Taking into account the material prop-
erties cp and ρ (Tab. 1) and taking into account the dependen-
cy (2), the value of the thermal conductivity coefficient for the 
tested material is K = 0.7267 W/(m · K). 

The procedure presented above was used to develop the ex-
perimental data (Fig. 3) and in the further part of the work to ana-
lyse the results of numerical calculations for the simulation of 
impulse heating. 

4. NUMERICAL MODEL OF THE IMPULSE HEATING ISSUE 

The numerical computational model, based on the finite ele-
ment method, simulates the conditions of impulse heating of a 
plane parallel plate of material to create a synthetic environment 
for the sensitivity analysis of the procedure for determining the 
value of the thermal diffusion coefficient, described in Chapter 0. 
Using the obtained results of numerical calculations, i.e. time-
varying temperature distributions, a linear approximation of the 
relationship ln(T∞ - T) to determine the value of the coefficient 
A will be carried out, and finally thermal diffusion k is determined. 
By recreating the procedure of thermal diffusivity determination 
based on the results of the numerical model, it is possible to 
estimate the influence of assumptions simplifying the solution of 
the inverse problem. 

 
Fig. 5. Simulation of the temperature rise on the back of the sample  

  during impulse heating (a); illustration of the linear approximation  
  procedure to determine the coefficient A and the value of thermal  
   diffusivity k (b) 

To solve the one-dimensional problem of heat conduction, de-
scribed by the Eq. (3) and with the application of boundary condi-
tions (4), the finite element method was used. Using the material 
properties of Tab. 1, a rectangular shape of the heating function 
q(t) was assumed with the maximum value of the surface density 
of the heat flux q = 10 kW/m2 and the previously determined value 
of the heat conduction coefficient K = 0.7267 W/(m · K). The 

computational model consists of 300 one-dimensional second-
order elements (square shape function) with linear length distribu-
tion and compaction on the side of the impulse-heated surface. 
The ratio of the size of the largest to the smallest element is 5, 
which gives the values lmin = 0.00166 mm and lmax = 0.00833 mm. 
The calculations used a time-dependent solution with a time step 
determined based on the backward differentiation method The 
Backward Differentiation Formula (BDF) with an initial step of 1e–
9 s. The preliminary calculations showed that the temperature on 
the surface x = g reaches the state of settling after 6 s and this 
time was taken as the end of the analysis. 

The results of the calculations and the graphical interpretation 
of the procedure for determining the value of the thermal diffusion 
coefficient based on these results are shown in Fig. 5 . The lower 
temperature rise (Fig. 5a) than was observed in experimental 

studies (Fig. 2) is noteworthy. The difference (0.79C against 

1.50C) results from an underestimation of the assumed value of 
the surface density of the heat flux q in the calculations. The issue 
of the influence of thermal excitation impulse parameters on the 
accuracy of the method will be analysed later in the paper. 

 
Fig. 6. The maximum value of the linear correlation coefficient r (a)  

  and the value of the thermal diffusion coefficient k and the relative  
  error of the method of its determination ε depending on the 
  number of points included in the linear approximation n – m 

When comparing the results of numerical calculations and ex-
perimental tests, it should be emphasized that there is no meas-
urement noise and a much larger amount of data, which facilitates 
the linear approximation of the data.  The value of the regression 
coefficient r remains very high even for a large number of points 
(Fig. 6a). Assuming the use of n – m = 100 points of calculation 
results, which corresponds to the time interval 1.676 s, the quality 
of linear approximation of the dependence ln[T∞ - T(t)], expressed 
by the linear regression parameter, is reached at the level r = 
0.999999993 (Fig. 6b). The values of the determined thermal 
diffusion coefficient k and the values of the accuracy parameter of 
the ε method depending on the conditions of linear approximation 
are shown in Fig. 6b. The method error is expressed as the rela-
tive difference between the obtained result and the reference 
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value kref of the thermal diffusion coefficient, adopted in the calcu-
lations: 

𝜀 =
|𝑘−𝑘𝑟𝑒𝑓|

𝑘𝑟𝑒𝑓
100% (15) 

For the indicated number of points and the range of data, it 
gives an accuracy of ε = 0.524%. The result should be assessed 
as more than satisfactory, especially since the obtained error ε 
accumulates the inaccuracy of the k coefficient determination 
method and the inaccuracy of solving the problem using the finite 
element method. 

5. SENSITIVITY STUDY OF THE METHOD  
FOR DETERMINING THERMAL DIFFUSIVITY 

The first parameter, the influence of which on the accuracy of 
determining the value of the thermal diffusion coefficient was 
investigated, was the time course of the heat flux q(t), hereinafter 
referred to as the heating function. Several variants of the heating 
process were compared while maintaining the same amount of 
energy supplied to the system during heating, i.e.: 

∫ 𝑞(𝑡)d𝑡
𝑡𝑓

0
= 𝑐𝑜𝑛𝑠𝑡. (16) 

The above analysed rectangular heating function (1, Fig. 7) 
with the duration tf = 0.2 s and the pulse size q = 10 kW/m2, corre-
sponds to the surface energy of 2 kJ/m2. Impulse parameters with 
the course of a parabola (2, Fig. 7) and three variants of triangular 
waveforms (3–5, Fig. 7) were chosen so that the energy of the 
heat excitation was identical. The obtained results, in the form of a 
temperature value change on the plate surface x = g, are shown 
in Fig. 8a. In all cases, the final temperature was T∞ = 24.17°C, 
with slight differences in reaching it. Note that for a square (1), 
parabolic (2) and symmetrical triangle (3) waveform, the differ-
ences are negligible. 

 
Fig. 7. Time courses of the impulse heating function q(t) 

By linear approximation of the dependence ln(T∞ -  T) 
(Fig. 8b) the directional coefficients A and the values of the ther-
mal diffusion coefficient k were determined. The results, including 
the values of linear regression for r, are provided in Tab. 2. It is 
worth emphasizing that in the case of variants of the heating 
function (2–4), the relative error of the method decreased to the 
value of ε = 0.045%. This should be explained by the improve-
ment of the conditions of the numerical solution of the problem of 
the finite element method. For the square waveform (1) and the 
variant (5) of the triangle waveform, there is a sudden jump in the 

value of the heat flux q(t) from the maximum value to zero, which 
is a great difficulty for the BDF solver. 
Based on the results of the calculations, it can be assumed that 
the shape of the heating function does not affect the accuracy of 
the procedure for determining the value of the thermal diffusion 
coefficient.  

 

Fig. 8. Temperature increase on the back of the sample during 
impulse heating (a); illustration of the linear approximation 
procedure to determine the coefficient A and the thermal dif-
fusivity value k (b) for different time courses of the heating 
function q(t) (1–5) 

Tab. 2. Summary of the results of calculations of the thermal diffusion  
             coefficient k for various courses of the heating function q(t) 

Case A (s-1)
 

r (- )
 

k (m2/s) 
 

ε (%)
 

(1) 1.88807 0.999999999 4.304e-07 0.546 

(2) 1.8993 0.999999989 4.33e-07 0.046 

(3) 1.89931 0.999999989 4.33e-07 0.046 

(4) 1.89929 0.99999999 4.33e-07 0.045 

(5) 1.88806 0.999999999 4.304e-07 0.546 

The next analysed parameter of the thermal excitation is its 
size assuming a constant duration tf = 0.2s and a rectangular 
course of the heating function q(t). The surface density of the heat 
flux varies in the range of q = 10÷106 W/m2. In this calculation 
variant, the amount of energy supplied to the tested material 
sample is different, which means that the temperature increase on 
the sample surface x = g after the completion of heating changes 

in the range of 0.00079÷79.19C (Fig. 9a). It is also worth noting 
that the time of settling the temperature after the end of the ther-
mal pulse is the same regardless of the size of the pulse. 

An obvious, but very important conclusion is that the magni-
tude of the thermal excitation impulse should be selected to obtain 
the optimal conditions for recording temperature changes on the 
opposite surface for the applied measurement system. An attempt 
to determine the value of thermal diffusivity with too small a tem-
perature difference after thermal excitation may be burdened with 
a significant measurement error. 
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Fig. 9. Temperature increase on the back of the sample during impulse  

  heating (a); illustration of the linear approximation procedure to  
  determine the coefficient A and the thermal diffusivity value k (b)  
  for different values of the heat flux surface density q = 10 (1),  
  100 (2), 1000 (3), 10000 (4), 2.1544 (5), 1 · 106 (6) W/m2 

Despite the very different end values of T∞ achieved, in the 
process of linear approximation of the dependence ln(T∞ - T) the 
parallel lines (Fig. 9b) were obtained, which showed no effect of 
the heat impulse size on the accuracy of the procedure for deter-
mining the value of the thermal diffusion coefficient. In Tab. 3 the 
obtained results are presented and, as can be seen in the condi-
tions of the numerical experiment, the method was shown to be 
insensitive to the heat pulse size. 

Tab. 3. Summary of the results of calculations of the thermal diffusion  
             coefficient k for different values of the surface density  
             of the heat flux q 

Case q (W/m2) A (s1)
 

r (- ) k (m2/s) 
 

ε (%) 

(1) 10 1.89937 0.999999996 4.33005e-07 0.049 

(2) 100 1.89937 0.999999996 4.33005e-07 0.049 

(3) 1,000 1.89937 0.999999996 4.33005e-07 0.049 

(4) 10,000 1.89937 0.999999996 4.33005e-07 0.049 

(5) 100,000 1.89937 0.999999996 4.33005e-07 0.049 

(6) 1,000,000 1.89937 0.999999996 4.33005e-07 0.049 

Another parameter that may affect the accuracy of determin-
ing the value of the thermal diffusion coefficient is the duration of 
the thermal input pulse tf . Fig. 10a shows the results of the simu-
lation of impulse heating of the sample with the excitation duration 
tf variable in the range from 0.1 s to 10 s and the same values of 
the surface density of the heat flux q. As in the previous calcula-
tions, the amount of heat supplied to the test sample is different. 
However, in this case, the time to reach the steady-state condi-
tions, i.e. reaching the temperature T∞ is different. The parame-
ters for the calculations and the results are presented in Tab. 4. 
The plot of the dependence of ln(T∞ - T) in time (Fig. 10b) indi-
cates that the length of the interval with a linear characteristic 
decreases with the increase of the pulse length tf. This can be 
seen especially clearly in Fig. 11, showing the regression values r 
versus the number of points used in the linear approximation 

(n - m). For subsequent calculation variants, the range of data for 
which a high value of the approximation quality parameter is 
achieved is reduced. For the thermal impulse excitation test with 
an impulse of length tf = 10 s, the relative error of the thermal 
diffusivity determination method was 3.66%.  

 
Fig. 10. Impulse heating (a) and determination of thermal diffusivity (b)  

    for different values of the heat pulse duration tf  = 0.1 s (1),  
    0.21544 s (2), 0.46416 s (3), 1.0 s (4), 2.1544 s (5), 4.6416 s (6), 
    10 s (7) 

Tab. 4. Summary of the results of calculations of the thermal diffusion  
             coefficient k for different durations of the heat pulse t f 

Case tf (s) A (s1) r (- ) k (m 2/s)  ε (%) 

(1) 0.1 1.88852 0.999999999 4.30532e-07 0.522 

(2) 0.21544 1.888 0.999999999 4.30412e-07 0.55 

(3) 0.46416 1.88686 0.999999998 4.30153e-07 0.61 

(4) 1.0 1.88442 0.999999997 4.29597e-07 0.738 

(5) 2.1544 1.8792 0.999999996 4.28406e-07 1.01 

(6) 4.6416 1.86795 0.999999491 4.25842e-07 1.61 

(7) 10.0 1.82894 0.99960493 4.16948e-07 3.66 

 
Fig. 11. Maximum regression values r obtained for a different number  

   of n – m points of the linear approximation at the pulse duration  
   tf = 0.1 s (1), 0.21544 s (2), 0.46416 s (3), 1.0 s (4), 2.1544 s (5),  
   4.6416 s (6), 10 s (7) 
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Nevertheless, it should be recognized that the requirement to 
use a very short duration of the thermal excitation impulse is not a 
critical condition. Despite a slight reduction in accuracy, it can be 
assumed that the thermal excitation period is lengthened, e.g., to 
increase the total thermal energy supplied during the test. 

In dependence (8), used to determine the value of the thermal 
diffusion coefficient k , there is a sample thickness parameter g. 
Its value can be influenced at the stage of preparing samples for 
conducting experimental trials. Fig. 12a shows the results of the 
simulation of impulse heating of samples with thicknesses varying 
from 0.5 mm to 5 mm while maintaining other conditions con-
sistent with those described in Chapter 4. In the process of linear 
approximation of the dependence ln(T∞ - T), lines with different 
directional coefficients A (Fig. 12b) were obtained, but after substi-
tution into a dependency (8) the obtained values of the thermal 
diffusion coefficient (Tab. 5) do not correlate with the sample 
thickness. 

 
Fig. 12. Impulse heating (a) and determination of thermal diffusivity  

    (b) for different sample thicknesses g = 0.5 (1) ÷ 5.0 (10) mm 

Tab. 5. Summary of the results of calculations of the thermal diffusion  
             coefficient k for various thicknesses of the sample g 

Case g (mm) A (s1) r (- ) k (m2/s)  ε (%) 

(1) 0.5 16.9289 1.000 4.28815e-07 0.92 

(2) 1.0 4.2473 1.000 4.30341e-07 0.57 

(3) 1.5 1.88866 1.000 4.30564e-07 0.51 

(4) 2.0 1.06254 1.000 4.3063e-07 0.5 

(5) 2.5 0.680069 1.000 4.30659e-07 0.49 

(6) 3.0 0.472287 1.000 4.30674e-07 0.49 

(7) 3.5 0.346998 1.000 4.30688e-07 0.49 

(8) 4.0 0.265688 1.000 4.30718e-07 0.48 

(9) 4.5 0.209969 1.000 4.30804e-07 0.46 

(10) 5.0 0.170174 1.000 4.31055e-07 0.4 

As in the previous calculation variant, the time of reaching the 
conditions set after the thermal impulse excitation is variable and 
in this case, depends on the thickness of the sample. Proper 
selection of this parameter can improve the conditions for carrying 

out measurements during experimental tests. For a given fre-
quency of measurements of the sample surface temperature and 
for materials with a high speed of heat wave propagation, it may 
turn out that the number of measurements that are in the linear 
dependence zone ln(T∞ - T) will be too small to accurately deter-
mine the A coefficient and to determine the value of the thermal 
diffusion coefficient. If it is not possible to carry out measurements 
at higher registration frequencies, then the test should be per-
formed on a sample of greater thickness. 

The above-mentioned conclusions regarding the thickness of 
the sample and the previous ones concerning the heat impulse 
duration and its size were formulated based on the results of 
simulation calculations of impulse heating in a convection-free 
environment. It can be expected that in real conditions, the pro-
cess of heat exchange between the heated sample and the envi-
ronment may affect the accuracy of the determination of the ther-
mal diffusivity value. 

The attempt to estimate this impact will be made based on the 
results of calculations using the finite element method of the 
impulse heating model of the plate at different values of the con-
vective heat transfer coefficient h, included in the analysis in the 
form of boundary conditions: 

∂𝑇

∂𝑥
|

𝑥=0
= ℎ[𝑇(𝑡, 𝑥 = 0) − 𝑇0],    𝑡 > 𝑡0,

∂𝑇

∂𝑥
|

𝑥=𝑔
= ℎ[𝑇(𝑡, 𝑥 = 𝑔) − 𝑇0],    𝑡 > 𝑡0,

                      (17) 

assuming that the initial temperature of the plate before heating is 
equal to the ambient temperature: T0 = Ta. The other boundary 
conditions comply with the conditions (4). 

 
Fig. 13. Temperature increase on the back of the sample during impulse  

    heating (a); illustration of the linear approximation procedure  
    to determine the coefficient A and the value of thermal diffusivity  
    k (b) for different values of the convective heat transfer  
    coefficient h = 0÷150 W/(m2K) (1–7) 

The calculation results, in the form of a plot of temperature 
values on the surface x = g, are shown in Fig. 13a. For all cases 
where the value of the convective heat transfer coefficient other 
than zero was used, no temperature determination was observed 
in the time interval covered by the analysis. In these cases, the 
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temperature T∞ = Tmax was assumed. Dependence ln(T∞ - T) and 
the results of linear approximation are shown in Fig. 13b and their 
cursory analysis shows that the presence of convection reduces 
the length of the linear segment of the dependence. This makes it 
difficult to carry out a linear approximation and the obtained re-
sults are subject to an error (Tab. 6), the greater, the more intense 
is the heat exchange process by the convection mechanism. 
Quality analysis of approximation (Fig. 14) confirms this thesis, 
the number of points lying on the numerical part of the depend-
ence ln(T∞ - T) decreases sharply with the onset of convection. 

Tab. 6. Summary of the results of calculations of the thermal diffusion  
             coefficient k for different values of the convective heat transfer  
             coefficient h 

Case 
h 

(W/[m2K]) 
A (s1)  r (- ) k (m2/s) ε (%) 

(1) 0 1.88807 0.999999999 4.30428e-07 0.55 

(2) 5 1.97308 0.999982033 4.49809e-07 3.9 

(3) 10 2.02164 0.999962527 4.60878e-07 6.5 

(4) 25 2.13749 0.999904664 4.8729e-07 13 

(5) 50 2.28404 0.999811522 5.20699e-07 20 

(6) 100 2.53275 0.999634372 5.77397e-07 33 

(7) 150 2.73303 0.999466132 6.23055e-07 44 

 

Fig. 14. The maximum regression values r obtained for a different 
number of points n - m of the linear approximation at differ-
ent values of the convective heat transfer coefficient 
h = 0÷150 W/(m2K) (1–7) 

Based on additional calculations, not included in the paper, 
the following conclusions were formulated regarding the influence 
of the convection phenomenon on the thermal diffusivity determi-
nation procedure: 

 The effect of convective cooling on the surface of the im-
pulse-heated sample and the observed surface on the de-
termined value of the thermal diffusion coefficient is the 
same. 

 The error caused by the presence of convection is independ-
ent of the magnitude of the thermal excitation impulse q. It is 
not an obvious conclusion and its justification may be the fact 
that only a short part of the T(t) heating curve is used for the 
thermal diffusivity value determination procedure. 

 The error of the method of determining the value of the ther-
mal diffusion coefficient caused by convection cooling is the 
greater, the longer the time of determining the maximum 
temperature on the opposite surface of the sample T∞ = Tmax. 
For a given material, this time is inversely proportional to the 
thickness of the sample. The requirement to use small sam-
ple thicknesses to minimize the effects of convection forces 
the use of measurement systems with a high frequency of 
measurement recording, as mentioned above. 

An in-depth analysis of the effect of convection cooling on the 
method of determining the value of the thermal diffusion coeffi-
cient goes beyond the scope of this work and requires further 
calculations. In the literature, for natural convection in air, the 
value of the heat transfer coefficient h is estimated at the level of 
5–10 W/(m2 · K) and, as the calculations have shown, it causes a 
method error in the range of 3.9%÷6.5%. It should be empha-
sized, however, that the indicated level of convective heat transfer 
intensity is achieved under steady-state conditions, with the de-
velopment of convective air movement. For dynamic conditions, 
convective heat transfer nucleation, the actual value of the heat 
transfer coefficient will change over time h = h(t) and for short 
observation times, it will be lower than the indicated values [11]. It 
is worth pointing out that in the work of [10], the accuracy of de-
termining the value of the thermal diffusion coefficient of 316 L 
steel was 0.5%. 

6. SUMMARY 

Based on the simulations of the impulse heating of a plane-
parallel plate of material and the reproduction of the procedure for 
determining the value of the thermal diffusion coefficient based on 
the solution of the inverse heat conduction problem, the following 
conclusions can be drawn: 
1. The method is not sensitive to the way impulse heating is 

carried out. The shape of the heating function, the amount of 
energy supplied, the size of the pulse, and its height and du-
ration (within reasonable limits) do not affect the accuracy of 
the method for determining the thermal diffusion coefficient 
under the conditions of the numerical experiment. 

2. The results of the numerical calculations did not show any 
correlation between the accuracy of the determination of the 
thermal diffusion coefficient and the characteristics of the 
sample, i.e. its thickness. One can confidently extend this 
conclusion to the thermo-physical properties of the material. 
The method is used both for testing good and weak heat 
conductors. 

3. The temperature change observed during the tests is directly 
related to the amount of thermal energy supplied to the sam-
ple. By selecting the density of the surface heat excitation 
energy q, the impulse duration tf, it is possible to induce an 
increase in temperature on the observed surface, adjusted to 
the sensitivity of the measuring system used. 

4. With the given thermo-physical properties of the tested mate-
rial, the thickness of the sample is directly related to the time 
of the temperature settling after the end of the impulse of the 
thermal excitation. This has an impact on the required speed 
of making and recording temperature measurements. 

5. The results of the simulation of impulse heating in conditions 
of convective heat exchange showed a critical influence on 
the accuracy of the method of thermal diffusivity determina-
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tion. This impact can be minimized without applying special 
test conditions, by appropriate selection of the test parame-
ters, i.e. heat excitation energy and test duration. 

6. The above conclusions indicate that the measuring system 
used in the tests should be characterized by high sensitivity 
and frequency of taking and recording temperature meas-
urements. Its absolute accuracy is not critical here.  

Despite the described limitations of the method, its ad-
vantages, i.e. simplicity, short implementation time, and no special 
requirements for sample preparation, make it a good tool for 
determining the value of the thermal diffusion coefficient of mate-
rials. 
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