PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Notes on multidimensional fixed-point theorems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we prove the existence and uniqueness of coincident (fixed) points for nonlinear mappings of any number of arguments under a (ψ ,θ, φ)-weak contraction condition without O-compatibility. The obtained results extend, improve and generalize some well-known results in the literature to be discussed below. Moreover, we present an example to show the efficiency of our results.
Wydawca
Rocznik
Strony
360--374
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • School of Quantitative Sciences, University Utara Malaysia, CAS 06010, UUM Sintok, Kedah Darul Aman, Malaysia
  • School of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
autor
  • School of Quantitative Sciences, University Utara Malaysia, CAS 06010, UUM Sintok, Kedah Darul Aman, Malaysia
  • School of Quantitative Sciences, University Utara Malaysia, CAS 06010, UUM Sintok, Kedah Darul Aman, Malaysia
autor
  • School of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Bibliografia
  • [1] Banach S., Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 1922, 3, 133-181
  • [2] Alsamir H., Noorani M. S., Shatanawi W., On new fixed point theorems for three types of (α, β) - (ψ, θ, φ)-multivalued contractive mappings in metric spaces, Cogent Math., 2016, 3, 1-13
  • [3] Kuman P., Sarwar M., Zada M. B., Fixed point results satisfying rational type contractive conditions in complex valid metric spaces, Ann. Math. Sil., 2016, 30, 89-110
  • [4] Sintunavarat W., Kuman P., Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type, J. Inequal. Appl., 2011, https://doi.org/10.1186/1029-242X-2011-3
  • [5] Guo D. J., Lakshmikantham V., Coupled xed points of nonlinear operators with applications, Nonlinear Anal., 1987, 11(5), 623-632
  • [6] Berinde V., Borcut M., Tripled fixed point theorems for contractive type mappings in partially ordered matric space, Nonlinear Anal., 2011, 74, 4889-4897
  • [7] Borcut M., Berinde V., Tripled coincidence theorems for contractive type mappings in partially ordered matric space, Appl. Math. Comput., 2012, 218, 5929-5936
  • [8] Karapinar E., Quadruple fixed point theorems for weak φ-contractions, ISRN Mathematical Analysis, 2011, http://dx.doi.org/10.5402/2011/989423
  • [9] Roldán A., Martínez-Moreno J., Roldán C., Multidimensional fixed point theorems in partially ordered complete metric spaces, J. Math. Anal. Appl., 2012, 396(2), 536-545
  • [10] Roldán A., Martínez-Moreno J., Roldán C., Cho Y. J., Multidimensional fixed point theorems under (ψ, φ)-contractive conditions in partially ordered complete metric spaces, J. Comput. Appl. Math., 2015, 273, 76-87
  • [11] Samet B., Karapinar E., Aydi H., Rajic C., Discussion on some coupled fixed point theorems, Fixed Point Theory and Appl., 2013, https://doi.org/10.1186/1687-1812-2013-50
  • [12] Rad G. S., Shukla S., Rahimi H., Some relations between n-tuple fixed point and fixed point results, RACSAM, 2015, 109(2), 471-481, https://doi.org/10.1007/s13398-014-0196-0
  • [13] Roldán A., Martínez-Moreno J., Roldán C., Karapinar E., Some remarks on multidimensional fixed point theorems, Fixed Point Theory., 2014, 15(2), 545-558
  • [14] Shaddad F., Noorani M. S., Alsulami S. M., Akhadkulov H., Coupled point results in partially ordered metric spaces without compatibility, Fixed Point Theory and Appl., 2014, https://doi.org/10.1186/1687-1812-2014-204
  • [15] Gnana Bhaskar T., Lakshmikantham V., Fixed point theorems in partially ordered metric space and applications, Nonlinear Anal., 2006, 65(7), 1379-1393
  • [16] Berzig M., Samet B., An extension of coupled fixed point’s concept in higher dimension and applications, Comput. Math. Appl., 2012, 63, 1319-1334
  • [17] Karapinar E., Berinde V., Quadruple fixed point theorems for nonlinear contractions in partially ordered metric space, Banach J. Math. Anal., 2012, 6(1), 74-89
  • [18] Paknazar M., Gordji M. E., De La Sen M., Vaezpour S. M., N-fixed point theorems for nonlinear contractions in partially ordered metric space Fixed Point Theory and Appl., 2013, https://doi.org/10.1186/1687-1812-2013-111
  • [19] Saleh A., Alsulami H., Karapinar E., Roldán A., Discussion on "Multidimensional Coincidence Points" via Recent Publications, Abstr. Appl. Anal., 2014, http://dx.doi.org/10.1155/2014/287492
  • [20] Kolodii I. M., Khil’debrand F., Some properties of the modulus of continuity, Mat. Zametki, 1971, 9(5), 495-500; Math. Notes of the Academy of Sciences of the USSR, 1971, 9(5), 285-288, https://doi.org/10.1007/BF01094353
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6def183-f139-414d-bf17-89b484f96b54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.