PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metallurgical quality evaluation of the wind turbine main shaft 42CrMo4 steel: microscopic and Mössbauer studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2016 (11th ; 19-22 June 2016 ; Radom-Turno, Poland)
Języki publikacji
EN
Abstrakty
EN
In this paper, the results of the complex examination of the 42CrMo4 steel samples are presented. The samples were taken from the metallurgical forging prepared for the production of the wind turbine main shaft. The samples underwent Mössbauer spectroscopic analysis, as well as the measurement of its mechanical characteristics such as hardness and strength are analysed. Conversion electron Mössbauer spectrometry confirmed phase purity and isotropy of the investigated 42CrMo4 steel. The method provided accurate results, proving Mössbauer spectrometry to be an effective tool for the wind turbine main shaft analysis.
Czasopismo
Rocznik
Strony
171--176
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Institute of Machinery Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland
  • Department of Physics, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland
autor
  • Department of Physics, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland
autor
  • Institute of Machinery Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland
  • CELSA Huta Ostrowiec Sp. z o.o., Forge Division, 2 Samsonowicza Str., 27-400 Ostrowiec Świętokrzyski, Poland
Bibliografia
  • 1. Arántegui, R. L., Corsatea, T., & Suomalainen, K. (2012). 2012 JRC wind status report. Petten: Joint Research Centre. (Report EUR 25647 EN).
  • 2. Fingersh, L., Hand, M., & Laxson, A. (2006). Wind turbine design cost and scaling model. Golden National Renewable Energy Laboratory. (Technical Report NREL/TP-500-40566).
  • 3. Greco, A., Sheng, S., Keller, J., & Erdemir, A. (2013). Material wear and fatigue in wind turbine systems. Wear, 302, 1583–1591. DOI: 10.1016/j.wear.2013.01.060.
  • 4. Herrmann, J., Rauert, T., Dalhoff, P., & Sander, M. (2016). Fatigue and fracture mechanical behaviour of a wind turbine rotor shaft made of cast iron and forged steel. Procedia Structural Integrity, 2, 2951–2958.DOI: 10.1016/j.prostr.2016.06.369.
  • 5. Zhang, Z., Yin, Z., Han, T., & Tan, A. C. C. (2013). Fracture analysis of wind turbine main shaft. Eng. Fail. Anal., 34, 129–139. DOI: 10.1016/j.engfailanal. 2013.07.014.
  • 6. Harada, H., Mikami, T., Shibata, M., Sokai, D., Yamamoto, A., & Tsubakino, H. (2005). Microstructural changes and crack initiation with white etching area formation under rolling/sliding contact in bearing steel. ISIJ Int., 45(12), 1897–1902. DOI: 10.2355/isijinternational.45.1897.
  • 7. Carroll, R. I., & Beynon, J. H. (2007). Rolling contact fatigue of white etching layer: part 1. Crack morphology. Wear, 262, 1253–1266. DOI: 10.1016/j.wear.2007.01.003.
  • 8. Madge, J. J., Leen, S. B., McColl, I. R., & Shipway,P. H. (2007). Contact-evolution based prediction of fretting fatigue life: Effect of slip amplitude. Wear, 262, 1159–1170. DOI: 10.1016/j.wear.2006.11.004.
  • 9. Huth, R. E. (2008, February). Vertical wind turbine shaft design trade study. Retrieved September, 23, 2016, from http://www3.nd.edu/~me463c18/Trade%20Studies/TSHuth.pdf.
  • 10. Bała, P., Krawczyk, J., Hanc, A., & Dercz, G. (2010). The Mössbauer spectroscopy and X-ray diffraction studies of phase transformation during tempering in high-carbon tool steel. Solid State Phenom., 163, 200–203. DOI: 10.4028/www.scientific.net/SSP.163.200.
  • 11. Min, N., Li, W., Li, H., & Jin, X. (2010). Atom probe and Mössbauer spectroscopy investigations of cementite dissolution in a cold drawn eutectoid steel. J. Mater. Sci. Technol., 26(9), 776–782. DOI: 10.1016/S1005-0302(10)60123-5.
  • 12. Güler, E., & Akta, H. (2006). Mössbauer studies on an AISI 1137 type steel. Bull. Mat. Sci., 29(3), 303–306.DOI: 10.1007/BF02706500.
  • 13. Górka, B., Budzynowski, T. W., & Brzózka, K. (2013). Structure of the superficial region and mechanical properties of nitrided cast steels. Nukleonika, 58(1), 117–121.
  • 14. Simon, G., Vasconcellos, M. A. Z., & dos Santos, C. A. (1998). Effects of argon irradiation on a plasmanitrided carbon steel. Surf. Coat. Technol., 102, 90–96. DOI: 10.1016/S0257-8972(97)00691-9.
  • 15. Oh, S. J., Cook, D. C., & Townsend, H. E. (1998). Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfi ne Interact., 112, 59–65. DOI: 10.1023/A:1011076308501.
  • 16. Brzózka, K., Żurowski, W., & Górka, B. (2013). Structure of friction products and the surface of tribological system elements. Nukleonika, 58(1), 99–103.
  • 17. Konieczny, R., & Idczak, R. (2015). Atomic shortrange order in mechanically synthesized iron based Fe-Zn alloys studied by 57Fe Mössbauer spectroscopy. Nukleonika, 60(1), 69–73. DOI: 10.1515/nuka-2015-0017.
  • 18. Konieczny, R., Idczak, R., & Chojcan, J. (2015). Interactions between osmium atoms dissolved in iron observed by the 57Fe Mössbauer spectroscopy. Nukleonika, 60(1), 75–79. DOI: 10.1515/nuka-2015-0016.
  • 19. Szumiata, T., Brzózka, K., Gawroński, M., Górka, B., Javed, A., Morley, N. A., & Gibbs, M. R. J. (2011). Structural and magnetic ordering in Fe-Ga thin films examined by Mössbauer spectrometry. Acta Phys. Pol. A, 119, 21–23. DOI: 10.12693/APhysPolA.119.21.
  • 20. Herranz, T., Rojas, S., Pérez-Alonso, F. J., Ojeda, M., Terreros, P., & Fierro, J. L. G. (2006). Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J. Catal., 243, 199–211. DOI: 10.1016/j.jcat.2006.07.012.
  • 21. Bała, P., Krawczyk, J., & Hanc, A. (2008). The Mössbauer spectroscopy studies of ε to cementite carbides transformation during isothermal heating from as-quenched state of high carbon tool steel. Acta Phys. Pol. A, 114, 1641–1650. DOI: 10.12693/APhysPolA.114.1641.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6deb470-4a16-411e-b193-9e13c75ece48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.