Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
All-electric ships (AES) are considered an effective solution for reducing greenhouse gas emissions as they are a platform to use clean energy sources such as lithium-ion batteries, fuel cells and solar cells instead of fossil fuel. Even though these batteries are a promising alternative, the accuracy of the battery state of charge (SOC) estimation is a critical factor for their safe and reliable operation. The SOC is a key indicator of battery residual capacity. Its estimation can effectively prevent battery over-discharge and over-charge. Next, this enables reliable estimation of the operation time of fully electric ferries, where little time is spent at the harbour, with limited time available for charging. Thus, battery management systems are essential. This paper presents a neural network model of battery SOC estimation, using a long short-term memory (LSTM) recurrent neural network (RNN) as a method for accurate estimation of the SOC in lithium-ion batteries. The current, voltage and surface temperature of the batteries are used as the inputs of the neural network. The influence of different numbers of neurons in the neural network’s hidden layer on the estimation error is analysed, and the estimation error of the neural network under different training times is compared. In addition, the hidden layer is varied from 1 to 3 layers of the LSTM nucleus and the SOC estimation error is analysed. The results show that the maximum absolute SOC estimation error of the LSTM RNN is 1.96% and the root mean square error is 0.986%, which validates the feasibility of the method.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
100--108
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Shanghai Maritime University, 1550 Hai Gang Da Dao, 201306 Shanghai, China
autor
- Shanghai Maritime University, 1550 Hai Gang Da Dao, 201306 Shanghai, China
autor
- Gdynia Maritime University, Morska, 81-225 Gdynia, Poland
Bibliografia
- 1. Alnes O., Eriksen S., Vartdal B. (2017): Battery-Powered Ships: A Class Society Perspective. IEEE Electrification Mag., 5(3), 10–21.
- 2. Guidi G., Suul J., Jenset F., Sorfonn I. (2017): Wireless Charging for Ships: High-Power Inductive Charging for Battery Electric and Plug-In Hybrid Vessels. IEEE Electrification. Mag., 5(3),, 22–32.
- 3. McCoy T. (2015): Electric ships past, present, and future [technology leaders]. IEEE Electrification Mag., 3(2), 4–11.
- 4. Skjong E., Volden R., Rødskar E., Molinas M., Johansen T., Cunningham J. (2016): Past, Present, and Future Challenges of the Marine Vessel’s Electrical Power System. IEEE Transactions on Transportation Electrification, 2(4), 522–537.
- 5. Mofor L., Nuttall P., Newell A. (2015): Renewable energy options for shipping. Int. Renewable Energy Agency, Abu Dhabi, UAE, Tech. Rep.
- 6. Wartsila. Wireless Charging (https://www.wartsila.com/ marine/build/power-systems/shore-connections/wirelesscharging), last accessed 11.07.2019.
- 7. Abkenar A., Nazari A, Jayasinghe S., Kapoor A., Negnevitsky M. (2017): Fuel Cell Power Management Using Genetic Expression Programming in All-Electric Ships. IEEE Transactions on Energy Conversion, 3(2), 779‒787.
- 8. Boveri A., Silvestro F., Molinas M. Skjong E. (2019); Optimal Sizing of Energy Storage Systems for Shipboard Applications. IEEE Transactions on Energy Conversion, 34 (2), 801–811.
- 9. Fei Y., Xie C., Tang Z., Zeng C., Quan S. (2017): State-ofCharge Estimation Based on Square Root Unscented Kalman Filter Algorithm for Li-ion Batteries. Proceedings of the CSEE, 37(15), 4514‒4520.
- 10. Yu H., Lu R., Zhu C., Ma R. (2012): State of Charge Estimation Calibration for Ni-MH Battery Based on Ampere-Hour Method. Transactions of China Electrotechnical Society, 27(6), 12‒18.
- 11. Weng C., Sun J., Peng H. (2014): A unified open-circuitvoltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring. Journal of Power Sources, 258(14), 228‒237.
- 12. Sun D., Chen X. (2015): Charge State Estimation of Li-ion Batteries Based on Discrete-time Sliding Mode Observers. Proceedings of the CSEE, 35(1), 185‒191.
- 13. Waag W., Fleischer C., Viejo B., et al. (2014): Critical review of the methods for monitoring of lithium-ion battery in electric and hybrid vehicles. Journal of Power Sources, 258, 321‒339.
- 14. Meng J., Luo G., Gao G. (2016): Lithium Polymer Battery State-of-Charge Estimation Based on Adaptive Unscented Kalman Filter and Support Vector Machine. IEEE Transactions on Power Electronics, 31(3), 2226‒2238.
- 15. Álvarez Antón J., García Nieto P., de Cos Juez, F., et al. (2013): Battery state-of-charge estimator using the SVM technique. Applied Mathematical Modeling, 37(9), 6244‒6253.
- 16. Du J., Liu Z., Wang Y. (2014): State of charge estimation for Li-ion battery based on model from extreme learning machine. Control Engineering Practice, 26, 11‒19.
- 17. Chang W. (2013): Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA. International Journal of Electrical Power and Energy Systems, 53, 603‒611.
- 18. Chaoui H., Ibe-Ekeocha C. C. (2016): State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks. IEEE Transactions on Vehicular Technology, 66(10), 8773‒8783.
- 19. El Mejdoubi A., Oukaour A., Chaoui H., et al. (2016): State-of-Charge and State-of-Health Lithium-Ion Batteries’ Diagnosis According to Surface Temperature Variation. IEEE Transactions on Industrial Electronics, 63(4), 2391‒2402.
- 20. Chen L., Wang Z., Lü Z., et al. (2018): A Novel Stateof-charge Estimation Method of Lithium-ion Batteries Combining the Grey Model and Genetic Algorithms. IEEE Transactions on Power Electronics, 33(10), 8797‒8807.
- 21. Liu Y., Tan G., He X. (2017): Optimized Battery Model Based Adaptive Sigma Kalman Filter for State of Charge Estimation. Transactions of China Electrotechnical Society, 32(2), 108‒118.
- 22. Pan H., Lu Z., Li J., Chen L. (2017): Estimation of LithiumIon Battery State of Charge Based on Grey Prediction Model-Extended Kalman Filter. Transactions of China Electrotechnical Society, 32(21), 1‒8.
- 23. Aung H., Soon Low K., Ting Goh S. (2015): State-ofcharge Estimation of Lithium-Ion Battery Using Square Root Spherical Unscented Kalman Filter (Sqrt-UKFST) in Nanosatellite. IEEE Transactions on Power Electronics, 30(9), 4774‒4783.
- 24. Sheng H., Xiao J., Wang P. (2017): Lithium Iron Phosphate Battery Electric Vehicle State-of-Charge Estimation Based on Evolutionary Gaussian Mixture Regression. IEEE Transactions on Industrial Electronics, 64(1), 544‒551.
- 25. Anton J., Nieto P., Viejo C., et al. (2013): Support vector machines used to estimate the battery state of charge. IEEE Transactions on Power Electronics, 28(12), 5919‒5926.
- 26. Wang Q., Sun Y., Ni F., Luo Y. (2016): A New Method of Battery State of Charge Prediction in the Hybrid Electric Vehicle. Transactions of China Electrotechnical Society, 31(9), 189‒196.
- 27. Yang F., Song X., Xu F., Tsui K. (2019): State-of-Charge Estimation of Lithium-Ion Batteries via Long Short-Term Memory Network. IEEE Access, 7, 53792–53799.
- 28. Han L., Yu C., Xiao K., Zhao X. (2019): A New Method of Mixed Gas Identification Based on a Convolutional Neural Network for Time Series Classification. Sensors, 19(9), 1‒23.
- 29. Shrestha A., Mahmood A. (2019): Review of Deep Learning Algorithms and Architectures. IEEE Access, 7, 53040‒53065.
- 30. Kingma D., Ba J. (2015): Adam: A method for stochastic optimization. International Conference on Learning Representations, May 7-9, 2015, San Diego, 1-13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6d9fe88-b9ef-4958-8499-1a7d137950ce