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ABSTRACT

All-electric ships (AES) are considered an effective solution for reducing greenhouse gas emissions as they are a platform 
to use clean energy sources such as lithium-ion batteries, fuel cells and solar cells instead of fossil fuel. Even though 
these batteries are a promising alternative, the accuracy of the battery state of charge (SOC) estimation is a critical 
factor for their safe and reliable operation. The SOC is a key indicator of battery residual capacity. Its estimation can 
effectively prevent battery over-discharge and over-charge. Next, this enables reliable estimation of the operation time 
of fully electric ferries, where little time is spent at the harbour, with limited time available for charging. Thus, battery 
management systems are essential. This paper presents a neural network model of battery SOC estimation, using 
a long short-term memory (LSTM) recurrent neural network (RNN) as a method for accurate estimation of the SOC in 
lithium-ion batteries. The current, voltage and surface temperature of the batteries are used as the inputs of the neural 
network. The influence of different numbers of neurons in the neural network’s hidden layer on the estimation error is 
analysed, and the estimation error of the neural network under different training times is compared. In addition, the 
hidden layer is varied from 1 to 3 layers of the LSTM nucleus and the SOC estimation error is analysed. The results 
show that the maximum absolute SOC estimation error of the LSTM RNN is 1.96% and the root mean square error 
is 0.986%, which validates the feasibility of the method.
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INTRODUCTION

Shipping is generally the most energy-effective mode 
of global mass cargo transportation. Nevertheless, the air 
pollution from shipping is still growing, while land-based 
emission is gradually declining. This is becoming a driving 
factor for the development of innovative and ecofriendly 
technologies for shipping [1]. One of the solutions is the large-
scale introduction of energy storage technologies, particularly 
using Li-ion batteries with high energy storage capacity [2]. 
The use of batteries onboard vessels is growing rapidly, leading 
to the development of ships with hybrid power systems or 
fully all-electric ships (AES), which are charged when in 
harbour, or back zero-emission sources like fuel-cells, solar 

panels, thermo-electric generators, wind energy conversion 
systems etc. [3–5]. In the former, due to the limited time 
spent in dock, high-power wireless charging technologies 
are being developed [2,6]. The number of AES is increasing 
rapidly and they are becoming a promising tool for reducing 
greenhouse gas emissions and the dependency on fossil fuels 
[3,4]. An example of a scheme for future zero emission AES, 
incorporating a lithium-ion battery pack, fuel-cell stack, 
super-capacitor bank and a photovoltaic (PV) power system, 
is shown in Fig. 1 [7].

With the advantages of high energy density, long service 
life and low self-discharge rate, lithium-ion batteries are 
becoming an important part of the energy source capacity 
in the AES. There are two main factors, when dealing with 
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such energy storage systems: optimal sizing [8] and SOC 
assessment. The SOC of lithium-ion batteries is the main 
basis for power management and control strategies. It 
plays a very important role in battery protection, working 
efficiency and service life extension as well as quality of 
service assessment, leading to an increase in the safety of 
the entire AES. Therefore, accurate estimation of the SOC 
of the batteries is essential for their efficient use and energy 
management throughout all ship services.

Fig. 1. Schematic diagram of a future zero-emission all-electric ship

Currently, methods of SOC estimation are divided into 
three categories. The first category directly predicts the SOC 
based on the voltage, current or internal resistance of the 
batteries. The main methods of this category include the 
ampere-time integration method, the open circuit voltage 
method and the estimation method based on the internal 
resistance of the batteries [9‒11]. The second category is based 
on an algorithmic estimation of equivalent battery models, 
such as the sliding mode observer [12] and the Luenberger 
observer [13]. The third category is the machine learning-
based prediction method developed nearly five years ago, 
mainly including the support vector machine [14,15], extreme 
learning machine [16], RBF kernel function neural network 
[17], recurrent neural network RNN [18], and other less 
popular solutions. 

The ampere-time integration method achieves SOC 
estimation by measuring and integrating the current, but it 
cannot solve the cumulative error and the inaccurate SOC 
initial value problem [19]. The disadvantage of the open 
circuit voltage method is that SOC estimation requires the 
battery to stand for a long time and is not suitable for online 
measurement [20]. The internal resistance method is rarely 
used because of the difference in the number and consistency 
of battery types [21].

The equivalent battery models generally use the equivalent 
resistance and capacitance to simulate the dynamic response 
of the battery, but ignore the physical and chemical reactions 
inside the battery unit. When the battery is over-charged 
or over-discharged causing severe physical and chemical 
reactions, the equivalent model cannot then be used to 
represent the real battery model [20]. This method is 
computationally intensive, and requires additional parameters 

or different battery models to estimate the SOC in different 
environments in practical applications. In [21], the adaptive 
sigma-point Kalman filter for optimising the battery model 
is used to estimate the SOC, but it only partly reduces 
the disadvantages of the complexity of the battery model 
and requires computational effort. In addition, improved 
algorithms such as the Gray extended Kalman filter [22] and 
a square root unscented Kalman filter [23] have been proposed. 
Such Kalman filtering algorithms rely on high-precision 

battery models and result 
in increased computational 
complexity [24].

Researchers have also used 
a machine learning-based 
prediction method to perform 
SOC estimation, which relies 
on traditional machine 
learning techniques. In [25], 
SVM technology is used for 
SOC estimation. In [26], 
researchers use the extreme 
learning machine algorithm 

for SOC estimation. Traditional machine learning techniques 
have common defects, and the training speed is slow and 
easily falls into the local minimum point. In view of the 
shortcomings of the above three types of methods, this paper 
uses the long short-term memory (LSTM) cell based recurrent 
neural network (RNN) to reduce the absolute error of SOC 
estimation to less than 2% [27]. In an extension of [27], the 
paper investigates the impact of the LSTM RNN properties 
on the estimation accuracy. It uses more experiments and 
additional factors for performance evaluation.

In recent years, with the continuous development of deep 
learning technology, some deep learning models have been 
gradually applied to the study of time series data. The deep 
learning model is a deep learning neural network model with 
multiple non-linear implicit levels. It can abstract the input 
signal layer by layer and extract features to dig deeper potential 
laws [28]. In real life, deep learning is used in content filtering 
of search engines, social media personal preference analysis 
and natural language processing on various portable smart 
devices. The prediction methods used in these successful 
deep learning application cases can be attributed to a branch 
of the artificial neural network, which is called the recurrent 
neural network with long short-term memory (LSTM) cells.

This paper will use the recurrent neural network with 
LSTM cells as a new machine learning technology, which can 
estimate the battery’s SOC by learning the parameters such 
as network weight and offset. The SOC cannot be directly 
measured but there is non-linear correlation between the SOC 
and easily measurable signals like the voltage, current and 
surface temperature. The three parameters have no correlation 
in terms of the battery’s physical characteristic. This 
technology can accurately map various items of information 
measured from the battery, such as the voltage, current and 
battery surface temperature, to the state of charge of the 
battery [27]. It avoids the cumbersome parameter estimation 
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process such as the Kalman filter during the training process. 
Only information about the number of hidden layer neurons, 
the batch size, the number of iterations, and the number 
of LSTM nuclei during training is required to obtain the 
optimal model. An LSTM recurrent neural network can 
derive different network parameter models under different 
operating conditions, different input parameter variables 
and even different battery types. This process only needs to 
sample a different type of battery to obtain a certain amount 
of training data.

LSTM RECURRENT NEURAL NETWORKS 
MODEL

Recurrent neural networks are different from BP neural 
networks or other conventional machine learning neural 
networks, where the current input parameter to the neural 
network is to calculate the output of the current time. 
Recurrent neural works can transmit a series of information 
from the previous time to the current time. The RNN standard 
model and expansion model are shown in Fig. 2. When the 
input enters a sequence x=(x1, x2 … xt), a hidden layer sequence 
h=(h1, h2 … ht) can be calculated by Eq. (1). The input sequence 
and hidden layer sequence can calculate an output sequence 
y=(y1, y2 … yt) using Eq. (2). Eq. (1) and Eq. (2) have been 
described in [27,29]:
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where f(.) represents the activation function, subscript t 
denotes the time, W is the network weight coefficient and b 
is the offset vector [29].
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Fig. 2. RNN standard model and expansion model

Although the RNN can effectively deal with non-linear 
time series over time, recurrent neural networks will generate 
a series of problems, such as gradient descent or gradient 
explosion, which will lead to the loss of effective information 
in the early stage or cause an error in the estimate by invalid 
information. Therefore, the LSTM recurrent neural networks 
are applied, and the RNN cell nuclei of the traditional 
recurrent neural networks are replaced with LSTM cell 
nuclei, which have long-term memory ability. This solves 

the problem of predicting and estimating long-term data with 
better success. The LSTM cell nuclei are shown in Fig. 3 [29].

tanh

tanh

Fig. 3. LSTM cell nuclei structure

In the LSTM cell nuclei, Ct is the state unit of the LSTM, 
which runs through the entire cell. The LSTM cell is able to 
fill the state unit with effective information or remove invalid 
information. The structure used in the process is called the 
threshold. The threshold consists of a sigmoid function and 
matrix point multiplication. The sigmoid function outputs 
a number between 0 and 1, describing the extent to which each 
item of information passes the threshold, where 0 means that 
all information is prohibited and 1 means that all information 
passes. There are three thresholds in the entire LSTM cell, 
namely the forgetting gate f, the input gate i and the output 
o. The forward propagation of the LSTM neural networks 
can be expressed by the following formula [27,29]:
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where the initial state matrix of the hidden layer is set to an 
all-zero matrix, δ and tanh represent the sigmoid activation 
function and the double-tangent activation function, 
it represents input at time t, ft represents forget at time t, 
ot represents output at time t and ct represents the state of 
the cell. W represents a matrix of weight coefficients between 
different layers (for example, Wxi represents the weighting 
matrix of the input layer to the input threshold i), b represents 
the bias term of the different layers (for example, bi represents 
the bias term of the input threshold i). The training framework 
is based on an LSTM battery. The SOC model includes input 
layers, hidden layers and output layers, where the input layer 
characterises the input variables, the hidden layer can be 
one or more LSTM cell nuclei, and the output characterises 
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the output variables. The fully connected layer realises the 
hidden layer’s linear output ht according to the combination 
of the weight W and the offset b, and then the output value 
at time t can be obtained through the output layer.

Start

Step 1: Initialize the weights and offsets of the network, set 
the number of hidden layer neurons, learning rate, number of 
iterations, number of LSTM cells, time step and number of 

iterations

Step 2: The network performs forward 
propagation to calculate the output of the network 

hidden layer and the output layer.

Step 3: The network performs backpropagation, 
calculates the error of the hidden layer and the 

output layer and finds the partial guide

Step 4: Update the network weights and offsets 
using the partial derivative obtained by 

backpropagation

Reach the maximum 
number of iterations

Number of iterations 
plus 1

End

Yes

No

Fig. 4. Model training framework flow chart

As shown in Fig. 4, after the LSTM recurrent neural 
network performs forward propagation, the error function 
is used to calculate the error between the network output 
value and the true value by Eq. (4):
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where T represents the entire sequence length selected by the 
SOC estimation, and SOCt and SOCt

* represent the estimated 
and true values of the battery SOC at time t respectively. In 
each training iteration, the LSTM recurrent neural network 
performs backpropagation, using the Adam [30] optimisation 
method to update the weights and offsets of the network as 
presented in Eq. (5):
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where L represents the error function, the attenuation 
coefficients β1 and β2 are usually set between 0.9 and 0.999, 
the learning rate α is generally set to 0.0001, the constant 
number θ is 10-8, and Wξ is the weight matrix. Finally, the 
number of training iterations reaches the preset maximum 
number, signifying the end of the trained model. This trained 
model, which now meets the performance requirements, is 
saved and later selected for future prediction.

EXPERIMENTAL TESTING AND DATA 
PREPROCESSING

EXPERIMENTAL TESTING

In this paper, the battery unit used is similar to that of 
the Tesla Electric Vehicle. The NCR18650PF lithium-ion 
battery produced by Panasonic Corporation is investigated 
as the experimental object. The rated capacity of the battery 
is 2.9 A

Tab. 1. Panasonic NCR18650PF battery unit parameters

Rated voltage 3.6 V
Rated battery capacity 2.9 A h
Maximum charging voltage / discharge cut-off voltage 4.2 V/2.5 V
Internal resistance 35 mΩ
Weight 47.5 g
Discharge temperature -20~+60°C

The established single-cell battery test bench is shown 
in Fig. 5. It consists mainly of a single-section Panasonic 
18650 lithium-ion battery, a Chroma charger, a WT1600 
power meter, and a temperature acquisition unit. The Chroma 
charger can charge the lithium-ion battery according to 
the set voltage and current. The WT1600 power meter can 
realise the battery voltage and current collection function. 
All experiments were performed at room temperature.

In order to obtain battery discharge data for training and 
verification of the LSTM recurrent neural network, the battery 
is charged using the 4.2 V/2.9 A charging mode. When the 
battery voltage reaches 4.2 V, the charging current reduces 
to 50 mA, indicating that the battery is fully charged. After 
the charging process is completed, the battery is allowed to 
stand at room temperature for 1 hour, and a constant value 
0.5 Ω resistor is used to discharge the battery. The discharge 
of the battery is recorded. When the battery voltage drops to 
2.5 V, the battery power is completely discharged. The battery 
is allowed to stand for another hour again, the charge and 
discharge test is repeated, and the data are recorded. The 
voltage, current and the surface temperature change of the 
battery in a single discharge phase are as shown in Fig. 6.
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Lithium-ion 
batteryTemperature Sensor

WT1600 power meter
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Fig. 5. Battery charge and discharge test bench
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 Fig. 6. Battery real-time discharge data curve

At room temperature, the battery has been charged and 
discharged five times. Four sets of data are used to train the 
LSTM neural network. The remaining group is used as the 
test set of the LSTM neural network to test the trained neural 
network’s accuracy. The SOC estimation result based on the 
LSTM recurrent neural network model is compared with 
the real value. The following formulae are used to evaluate 
the performance of the SOC prediction model based on the 
LSTM recurrent neural network: the root mean square error 
RMSE, the mean absolute error MAE, and the maximum 
absolute error MAX.

?@AB �

C



D

' �

E

FG�

+ E

H�

�

,

D

�-

II

(6)

@JB �



D

' K

E

FG�

+ E

H�

K

D

�-

  (7)

@JL � MNOIPQ

R

ST

�R

UVT

R

ST

Q W � � XYZ[  (8)

Iesi represents the estimated value, Iai is the actual value, and 
N is the number of observations.

DATA PREPROCESSING

LSTM neural network training selects three important 
factors, including the voltage, current, and battery surface 
temperature. Through proper data preprocessing, the training 
data of the network will be more effective and robust. The 
arithmetic average filtering algorithm is used to smooth out 
each set of raw data, and then all the data are normalised to 
improve the convergence speed of the network model training. 
The input and output are normalised to a range between 0 and 
1 using the following formula:
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where xmax and xmin are the maximum and minimum values 
of the LSTM neural network input vector.

RESULT AND ANALYSIS

As described in the previous chapter, the LSTM neural 
network input is Xt and the output is SOCt. The SOCt is the 
measured value of the battery state of charge at time t, and 
Xt represents the input of the neural network at time t, which 
is a vector Xt=[Vt, It, Tt], including the battery voltage Vt, 
battery current It, and battery surface temperature Tt. After 
the training process, the neural network can self-learn the 
entire network parameters for later actual estimation, as 
illustrated in Fig. 7. In this paper, 5 sets of battery discharge 
data were collected at room temperature, 4 groups were used 
as the training set to train the neural network, and 1 group 
was used as a verification set to verify the accuracy of the 
saved model. This means that 20% of the 5 groups of data 
is proposed as testing data. So, 20% of all the input data, 
measured by the unit of batch size, serves as a predictor of 
reliability, which seems sufficient for the purpose.

The LSTM neural network is set to a single-layer LSTM 
cell. After debugging, the number of hidden layer neurons is 
set to 320, the batch size is 200, and the maximum number 
of iterations is 200, which produced the best result in the 
practical project of lithium-ion battery SOC prediction. The 
neural network is trained with four sets of data for a total time 
of 117s. The obtained model is used for the verification set. 
The maximum absolute error, MAX, in the final prediction 
result is 1.96%, while the mean absolute error, MAE, and 
the root mean square error, RMSE, are 0.455% and 0.986%, 
respectively. It is noted that the predicted value deviates 
from the true value to a small extent. The performance of 
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the SOC estimation model based on the LSTM neural network 
is shown in Fig. 8.

Fig. 7. LSTM-based battery SOC estimation model training framework 
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 Fig. 8. Performance graph of SOC estimation model based on LSTM 
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INFLUENCE OF HYPER-PARAMETERS OF LSTM 
NEURAL NETWORK ON SOC PREDICTION RESULTS

The number of hidden layer neurons n and batch size Bs are 
important hyper-parameters of the LSTM neural network, in 
which batch size Bs is divided into several small batch data 
to be input into the neural network. These are the two main 
hyper-parameters, whose adjustments have an important 
influence on the accuracy of the LSTM neural network SOC 
prediction.

Firstly, the hidden layer is set to single-layer LSTM cell 
cores, the batch size is set to 512, the maximum number 
of iterations is set to 200, and the numbers of hidden layer 
neurons are set to 80, 260, and 440, respectively. Next, the 
total training time of the neural network, the maximum 
absolute error MAX, the mean absolute error MAE, and the 
root mean square error RMSE are selected to evaluate the 
prediction results, as shown in Fig. 9.

As the number of neurons n increases, the training time 
of the entire SOC prediction network model increases. The 
MAE and the RMSE show a moderately downward trend. 
Nevertheless, the increase in the number of neurons as 
a whole reduces the two errors. Fortunately, the MAX error 
drops significantly. When n=80, the MAX is greater than 6%. 
When n=440, the MAX is less than 4%. In order to achieve 
good accuracy and reliability of the SOC prediction model 
while also considering the model training time, the number 
of neurons in the hidden layer LSTM nuclear unit should be 
appropriately increased.

To further verify the effect of the batch size on the SOC 
prediction results, the hidden layer is set to a single-layer 
LSTM cells nucleus. The number of hidden layer neurons is set 
to 200, the maximum number of training iterations is set to 
200, and the batch size is set to 200, 356, and 512, respectively. 
The results from the LSTM neural network prediction and 
the prediction errors trained for the different batch sizes are 
shown in Fig. 10.
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Fig. 9. Performance of SOC estimation model for different numbers of neurons
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Fig. 10. SOC prediction for different batch sizes

Table 2 shows that, as the batch size increases, the total 
training time of the neural network decreases. At the same 
time, the increase of the batch size will increase the maximum 
absolute error, but the overall root mean square error and 
the average mean error will be reduced, which improves the 
overall accuracy of the model prediction. In order to reduce 
the model training time, the batch size should be increased, 
taking into account the maximum absolute error limit of SOC 
prediction. However, the batch size cannot be increased too 
much, or else the maximum absolute error of SOC prediction 
will exceed 5%, resulting in inaccurate SOC prediction.
Tab. 2 Network performance indicators when different batch sizes are taken
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INFLUENCE OF THE NUMBER OF LSTM 
NUCLEI ON SOC PREDICTION RESULTS

The LSTM neural network can be designed for multiple 
LSTM nuclei in the hidden layer. In order to reflect the 
influence of multiple LSTM nuclei on the SOC prediction 
results, the number of neurons in the hidden layer of a single 
LSTM cell is set to 320, the batch size is set to 400, and the 
maximum number of training iterations is set to 200, while 
the hidden layer is changed from 1, 2, and 3 LSTM nuclei, and 
the SOC prediction error is obtained for different numbers of 
LSTM nuclei in the hidden layer. The SOC prediction results 
are obtained for the hidden layers with different numbers 
of LSTM nuclei. The performance of the model is shown in 
Fig. 11.
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Fig. 11. SOC prediction results of the different numbers of LSTM nuclei

When the LSTM hidden layer is designed as one or two 
LSTM nuclei, the SOC prediction error can be guaranteed to 
be less than 4%. When the hidden layer is selected as three 
LSTM nuclei, the error of the trained SOC prediction model 
is large. After the SOC reaches 40%, the prediction error is 
larger than 5%, and accurate prediction of the SOC cannot 
be achieved. Therefore, the designed number of hidden 
layer LSTM nuclei should be less than 3, or else the trained 
prediction model will be over-fitted and a good prediction 
result cannot be attained.

CONCLUSION

The SOC prediction error of a lithium-ion battery and an 
SOC prediction method based on an LSTM neural network 
for the same has been investigated. This paper aims to 
solve three problems. Firstly, it solves the problem of the 
battery physics modelling used for SOC prediction in the 
past and uses the LSTM neural network to directly map 
battery-related measured values   (such as voltage, current 
and temperature) to the SOC. Secondly, the solution can free 
researchers from manual calculation of the battery model 
parameters or estimation algorithms such as those in the 
Kalman filter algorithm. The LSTM neural network can use 
the data collected from the original training to train the 
neural network to self-learn all network parameters. The 
third contribution lies in the accuracy of the battery SOC 
prediction. Through experimental verification, the maximum 
absolute error of the established prediction model is less than 

2%, which is lower than the actual application requirement of 
5%, thus meeting the practical application requirements. In 
summary, the LSTM neural network has been experimentally 
validated and has achieved good performance. It has proven 
to be a powerful tool for estimation of the SOC of lithium-ion 
batteries and may be another diagnostic strategy for batteries 
for consideration in future work. Considering the amount of 
data generated by the energy storage system, it is natural to 
consider machine learning algorithms to perform state and 
parameter estimation. This paper shows how these algorithms 
self-learn the parameters of the prediction model, even if 
exposed to scarce data sets, in order to achieve competitive 
evaluation performance. As a result, the proposal can be 
a powerful tool supporting the management of power systems 
onboard the ever-increasing number of ships with energy 
storage facilities containing lithium-ion batteries. This is 
relevant to ships with hybrid power systems and fully electric 
ships, especially those utilising various charging technologies 
in dock. The necessary docking time can be optimised by 
improving ferry fleet management.
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