PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, thermally reduced graphene oxide (TRG)-containing polyurethane nanocomposites were obtained by the extrusion method. The content of TRG incorporated into polyurethane elastomer systems equaled 0.5, 1.0, 2.0 and 3.0 wt%. The morphology, static and dynamic mechanical properties, and thermal stability of the modified materials were investigated. The application of TRG resulted in a visible increase in material stiffness as confirmed by the measurements of complex compression modulus (E′) and glass transition temperature (Tg). The Tg increased with increasing content of nanofiller in the thermoplastic system. The addition of thermally reduced graphene oxide had a slight effect on thermal stability of the obtained materials. The incorporation of 0.5, 1.0, 2.0 and 3.0 wt% of TRG into a system resulted in increased char residues compared to unmodified PU elastomer. Also, this study demonstrated that after exceeding a specific amount of TRG, the physicomechanical properties of modified materials start to deteriorate.
Słowa kluczowe
Rocznik
Strony
88--94
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Department of Polymer Technology, Chemical Faculty, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Department of Polymer Technology, Chemical Faculty, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Department of Polymer Technology, Chemical Faculty, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Department of Polymer Technology, Chemical Faculty, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland
Bibliografia
  • 1. Stankovich, S., Dikin, D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J. & Stach E.A., et al. (2006). Graphene-based composite materials. Nature 442, 282–286. DOI: 10.1038/nature04969.
  • 2. Ray, S.S. & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002.
  • 3. Leroux, F. & Besse, J.P. (2001). Polymer intercalated layered double hydroxide: a new emerging class of nanocomposites. Chem. Mater. 13, 3507–3515. DOI: 10.1021/cm0110268.
  • 4. Peng, L., Kim, N.H., Bhadra, S. & Lee, J.H. (2009). Electroresponsive property of novel poly(acrylate-acryloyloxyethyl trimethyl ammoniumchloride)/clay nanocomposite hydrogels. Adv. Mater. Res. 79, 2263–2266. DOI: 10.4028/www.scientific.net/AMR.79-82.2263.
  • 5. Giannelis, E.P., Krishnamoorti, R. & Manias, E. (1999). Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107–147. DOI: 10.1007/3-540-69711-X_3.
  • 6. Uddin, F. (2008). Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A 39, 2805–2814. DOI: 10.1007/s11661-008-9603-5.
  • 7. Zhang, W., Blackburn, R.S. & Dehghani-Sanij, A. (2007). Electrical conductivity of epoxy resin-carbon black-silica nanocomposites: effect of silica concentration and analysis of polymer curing reaction by FTIR. Scripta. Mater. 57, 949–952. DOI: 10.1016/j.scriptamat.2007.07.030.
  • 8. Li, Q., Siddaramaiah, Kim, N.H., Yoo, G.H. & Lee, J.H. (2009). Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high-density polyethylene/carbon black nanocomposites. Compos. Part B 40, 218–224. DOI: 10.1016/j.compositesb.2008.11.002
  • 9. Chen, X., Zheng, Y.P., Kang, F. & Shen, W.C. (2006). Preparation and structure analysis of carbon/carbon composite made from phenolic resin impregnation into exfoliated graphite. J. Phys. Chem. Solids 67, 1141–1144. DOI: 10.1016/j.jpcs.2006.01.087.
  • 10. Liao, S.H., Yen, C.Y., Weng, C.C., Lin, Y.F., Ma, C.C.M. &Yang, C.H., et al. (2008). Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J. Power. Sources. 185, 1225–1232. DOI: 10.1016/j.jpowsour.2009.06.064.
  • 11. Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C. & Chen, J. (2008). One step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Adv. Funct. Mater. 18, 1518–1525. DOI: 10.1002/adfm.200700797.
  • 12. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W. & Potts, J.R., et al. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906–3924. DOI: 10.1002/adma.201001068.
  • 13. Si, Y. & Samulski, T. (2008). Synthesis of water soluble graphene. Nano. Lett. 8, 1679–1682. DOI: 10.1021/nl080604h.
  • 14. Geim, A.K. & MacDonald, A.H. (2007). Graphene: exploring carbon flatland. Phys. Today 60(8), 35–34. DOI: 10.1063/1.2774096.
  • 15. Wang, G., Shen, X., Wang, B., Yao, J. & Park, J. (2009) Synthesis and characterization of hydrophilic and organophilic graphene nanosheets. Carbon 47, 1359–1364. DOI: 10.1016/j.carbon.2009.01.027.
  • 16. Wang, G., Yang, J., Park, J., Gou, X., Wang, B. & Liu, H., et al. (2008). Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195. DOI: 10.1021/jp710931h.
  • 17. Dreyer, R.D., Park, S., Bielawski, C.W. & Ruoff, R.S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240. DOI: 10.1039/b917103g.
  • 18. Wang, X., Yang, H., Song, L., Hu, Y., Xing, W. & Lu, H. (2011). Morphology, mechanical and thermal properties ofgraphene-reinforced poly(butylene succinate) nanocomposites. Compos. Sci. Technol. 72, 1–6. DOI: 10.1016/j.compscitech.2011.05.007.
  • 19. Kim, H., Abdala, A.A. & Macosko, C.W. (2010). Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530. DOI: 10.1021/ma100572e.
  • 20. Mya, K.Y., Gose, H.B., Pretsch, T., Bothe, M. & He, C. (2011). Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. J. Mater. Chem. 21, 4827–4836. DOI: 10.1039/C0JM04459H.
  • 21. Ma, W.S., Wu, L., Yang, F. & Wang, S.F. (2014). Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J. Mater. Sci. 49, 562–571. DOI: 10.1007/s10853-013-7736-4.
  • 22. Jung, Y.C., Sahoo, N.G. & Cho, J.W. (2006). Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers. Macromol Rapid Commun. 27, 126–131. DOI: 10.1002/marc.200500658.
  • 23. Kim, J.T., Kim, B.K., Kim, E.Y., Park, H.C. & Jeong, H.M. (2014). Synthesis and shape memory performance of polyurethane/graphene nanocomposites. Reac. Func. Polym. 74, 16–21. DOI: 10.1016/j.reactfunctpolym.2013.10.004.
  • 24. Park, J.H. & Kim, B.K. (2014). Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids. Smart Mater. Struct. 23, from http://iop-science.iop.org/0964-1726/23/2/025038, DOI: 10.1088/0964-1726/23/2/025038.
  • 25. Bernal, M.M., Martin-Gallego, M., Molenberg, I., Huynen, I., López, M.A. & Verdejo, M.R. (2014). Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. RSC Adv. 4, 7911–7918. DOI: 10.1039/C3RA45607B.
  • 26. Hodlur, R.M. & Rabinal, M.K. (2014). Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos. Sci. Technol. 90, 160–165. DOI: 10.1016/j.compscitech.2013.11.005.
  • 27. Allen, M.J., Tung, V.C. & Kaner, R.B. (2010). Honeycomb carbon: a review of grapheme. Chem. Rev. 110, 132–145. DOI: 10.1021/cr900070d.
  • 28. Delebecq, E., Pascault, J.P., Boutevin, B. & Ganachaud, F. (2013). On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 113, 80–118. DOI: 10.1021/cr300195n.
  • 29. Sadasivuni, K.K., Ponnamma, D., Thomas, S. & Grohens, Y. (2014). Evolution from graphite to graphene elastomer composites. Prog. Polym. Sci. 39, 749–780. DOI: 10.1016/j.progpolymsci.2013.08.003.
  • 30. Huang, X., Qi, X., Boey, F. & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev. 41, 666–686. DOI: 10.1039/C1CS15078B.
  • 31. Jung, Y.C., Yoo, H.J., Kim, Y.A., Cho, J.W. & Endo, M. (2010). Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes, Carbon 48, 1598–1603. DOI:10.1016/j.carbon.2009.12.058.
  • 32. Yadav, S.K., Mahapatra, S.S. & Cho, J.W. (2012). Synthesis of mechanically robust antimicrobial nanocomposites by click coupling of hyperbranched polyurethane and carbon nanotubes, Polymer 53, 2023–2031. DOI: 10.1016/j.polymer.2012.03.010.
  • 33. Deka, H., Karak, N., Kalita, R.D. & Buragohain, A.K. (2010). Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48, 2013–2022. DOI: 10.1016/j.carbon.2010.02.009.
  • 34. Ma, W.S., Wu, L., Yang, F. & Wang, S.F. (2014). Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J. Mater. Sci. 49, 562–571. DOI: 10.1007/s10853-013-7736-4.
  • 35. Cai, D., Yusoh, K. & Song, M. (2009). The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20, from http://iop-science.iop.org/0957-4484/20/8/085712. DOI: 10.1088/0957-4484/20/8/085712.
  • 36. Bernal, M.M., Molenberg, I., Estravis, S., Rodriguez-Perez, M.A., Huynen, I., Lopez-Manchado, M.A. & Verdejo, R. (2012). Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. J. Mater. Sci. 47, 5673–5679. DOI: 10.1007/s10853-012-6331-4.
  • 37. Mya, K.Y., Gose, H.B., Pretsch, T., Bothe, M. & He, C. (2011). Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. J. Mater. Chem. 21, 4827–4836. DOI: 10.1039/C0JM04459H.
  • 38. Park, J.H. & Kim, B.K. (2014). Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids. Smart Mater. Struct. 23, 1–7. DOI: 10.1088/0964-1726/23/2/025038.
  • 39. Bernal, M.M., Molenberg, I., Estravis, S., Rodriguez-Perez, M.A., Huynen, I., Lopez-Manchado, M.A. & Verdejo, R. (2012). Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. J. Mater. Sci. 47, 5673–5679. DOI: 10.1007/s10853-012-6331-4.
  • 40. Hodlur, R.M. & Rabinal, M.K. (2014). Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos. Sci. Technol. 90, 160–165. DOI: 10.1016/j.compscitech.2013.11.005.
  • 41. Cai, D., Yusoh, K. & Song, M. (2009). The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20, from http://iopscience.iop.org/0957-4484/20/8/085712. DOI: 10.1088/0957-4484/20/8/085712.
  • 42. Xia, H.S. & Song, M. (2005). Preparation and characterization of polyurethane–carbon nanotube Composites. Soft Matter 1(5), 386–394. DOI: 10.1039/b509038e.
  • 43. Chattopadhyay, D.K. & Webster, D.C. (2009). Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34(10), 1068–1133. DOI: 10.1016/j.progpolymsci.2009.06.002.
  • 44. Thirumal, M., Khastgir, D., Nando, G.B., Naik, Y.P. & Singha, N.K. (2010). Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym. Degrad. Stab. 95(6), 1138–1145. DOI: 10.1016/j.polymdegradstab.2010.01.035.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6d79886-d957-47cf-8c3c-12eebf34dce3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.