Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, a frequency domain method for damping determination is presented. The described method is especially developed for low damped systems with well separated eigenfrequencies. Using the Short-Term Fourier transform and Resampling (STFR) of the signal, decay curves of several mode shapes can be identified and amplitude-dependent damping values can be calculated. Additionally, two common methods for damping determination are explained briefly. Finally, the quality of the introduced method is evaluated comparing the variances of the identified damping values by means of different methods. In this context, the damping for beams clamped in a suspended way is analyzed. Stainless steel is used as the specimen material.
Czasopismo
Rocznik
Tom
Strony
395--407
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Leibniz Universit¨at Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
autor
- Leibniz Universit¨at Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
autor
- Leibniz Universit¨at Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
autor
- ALSTOM Power, Steam Turbines and Generators, Baden, Switzerland
Bibliografia
- 1. Bert C.W., 1973, Material damping: an introductory review of mathematical models measures and experimental techniques, Journal of Sound and Vibration, 29, 129-153
- 2. Feldman M., 1994, Non-linear system vibration analysis using Hilbert transform-II, forced vibration analysis method ‘Forcevib’, Journal of Mechanical Systems and Signal Processing, 8, 309-318
- 3. Hans S., Irbaim S., Pernot S., Boutin C., Lamarque C.H., 2000, Damping identification in multi-degree-of-freedom systems via a wavelet-logarithmic decrement – part 2: study of a civil engineering building, Journal of Sound and Vibration, 253, 375-403
- 4. He J., Fu Z.F., 2001, Modal Analysis, Butterworth Heinemann, Oxford, Auckland, Boston, Johannesburg, Melbourne, New Delhi
- 5. Hentschel O.P., Panning-von Scheidt L., Wallaschek J., Denk M., Masserey P.A., 2014, Influential parameters on structural damping values of turbine blades, Proceedings of ASME Turbo Expo 2014, Power for Land, Sea and Air, June 16-20, D¨usseldorf, Germany, Paper GT2014- 25656
- 6. Jinting W., Dandan L., Feng J., Chuhan Z., 2013, Accuracy of the half-power bandwidth method with a third-order correction for estimating damping in multi-DOF systems, Earthquake Engineering and Engineering Vibration, 12, 33-38
- 7. Lamarque C.H., Pernot S., Cuer A., 2000, Damping identification in multi-degree-of-freedom systems via a wavelet-logarithmic decrement – Part 1: Theory, Journal of Sound and Vibration, 253, 361-374
- 8. Lardies J., Gouttebroze S., 2002, Identification of modal parameters using the wavelet transform, International Journal of Mechanical Sciences, 44, 2263-2283
- 9. Le T.P., Argoul P., 2004, Continuous wavelet transform for modal identification using free decay response, Journal of Sound and Vibration, 277, 73-100
- 10. Meisner M., 2012, Accuracy issues of discrete Hilbert transform in identification of instantaneous parameters of vibration signals, Acoustic and Biomedical Engineering, 121, 164-167
- 11. Nelder J.A., Mead R., 1965, A simplex method for function minimization, The Computer Journal, 7, 308-313
- 12. Oppenheim A.V., Schafer R.W., 2010, Discrete-Time Signal Processing, Third edition, Prentice Hall
- 13. Petrov E.P., Ewins D.J., 2006, Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies, Journal of Turbomachinery, 128, 403-410
- 14. Plunkett R., 1959, Measurement of Damping, Structural Damping, Ruzicka J., ed., ASME, Atlantic City, NJ USA, 117-131
- 15. Rao J.S., Saldanha A., 2003, Turbomachine blade damping, Journal of Sound and Vibration, 262, 731-738
- 16. Rice T., Bell D., Singh G., 2007, Identification of the stability margin between safe operation and the onset of blade flutter, Proceedings of ASME Turbo Expo 2007, Power for Land, Sea and Air, May 14-17, Montreal, Canada, Paper GT2007-27462
- 17. Richardson M.H., Formeti D.L., 1982, Parameter estimation from frequency response measurements using rational fractional polynomials, Proceedings of the First International Modal Analysis Conference, 167-180, Orlando, USA
- 18. Siewert C., Panning L., Gerber C., Masserey P. A., 2008, Numerical and experimental damping prediction of a nonlinearly coupled low pressure steam turbine blading, Proceedings of ASME Turbo Expo 2008, Power for Land, Sea and Air, June 09-13, Berlin, Germany, Paper GT2010-51073
- 19. Slavic J., Simonovski I., Boltezar M., 2003, Damping identification using a continuous wavelet transform: application to real data, Journal of Sound and Vibration, 262, 291-307
- 20. Yang Y., Cascante G., Polak M. A., 2011, New method for the evaluation of material damping using the wavelet transform, Journal of Geotechnical and Geoenvironmental Engineering, 137, 798-808
- 21. Yang J.N., Lei Y., Pan S., Huang N., 2003a, System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: Normal modes, Earthquake Engineering and Structural Dynamics, 32, 1443-1467
- 22. Yang J.N., Lei Y., Pan S., Huang N., 2003b, System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: Complex modes, Earthquake Engineering and Structural Dynamics, 32, 1533-1554
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6d5c3a4-4a34-46f3-a1c6-4c3f488f5619