Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Artificially introduced into the environment 90Sr is highly radiotoxic, so its content levels in foodstuff and biota require constant monitoring for radiological protection. Most analytical procedures used for 90Sr determination are time-consuming, and therefore, a faster approach is needed. Employing the Bateman equation enables more effi cient exploitation of the secular equilibrium between 90Sr and its daughter radionuclide 90Y in the calculations. This article describes a method for computing the 90Sr activity concentration, while accounting for 90Y activity. The developed approach was tested and validated in terms of its applicability in everyday analysis.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
67--72
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Central Laboratory for Radiological Protection Konwaliowa 7 Str., 03-194 Warsaw, Poland
autor
- Central Laboratory for Radiological Protection Konwaliowa 7 Str., 03-194 Warsaw, Poland
autor
- Central Laboratory for Radiological Protection Konwaliowa 7 Str., 03-194 Warsaw, Poland
Bibliografia
- 1. UNSCEAR. (2000). Report to the General Assembly. Annex C: Exposures to the public from man-made sources of radiation. Vol. I. New York: United Nations.
- 2. UNSCEAR. (2000). Sources and effects of ionizing radiation: UNSCEAR 2000 report to the General Assembly exposures and effects of the Chernobyl accident. Vol. II. New York: United Nations.
- 3. IAEA. (2015). The Fukushima Daiichi accident: Radiological consequences. In The Fukushima Daiichi accident (Vol. 4, p. 6). Vienna: International Atomic Energy Agency.
- 4. Bé, M. M., Chisté, V., Dulieu, C., Kellett, M. A., Mougeot, X., Arinc, A., Chechev, V. P., Kuzmenko, N., Kibedi, T., Luca, A., & Nichols, A. (2016). Table of radionuclides (Vol. 8, A = 41 to 198) (8th ed.). Bureau International des Poids et Mesures.
- 5. ICRP. (2016). Occupational intakes of radionuclides: Part 2. ICRP Publication 134. Ann. ICRP, 45(3/4), 1–352.
- 6. dell’Oro, D., Iammarino, M., Bortone, N., Mangiacotti, M., & Chiaravalle, A. E. (2014). Determination of radiostrontium in milk samples by ultra-low-level liquid scintillation counting: a validated approach. Food Addit. Contam. Part A-Chem., 31(12), 2014–2021.https://doi.org/10.1080/19440049.2014.968883
- 7. Eikenberg, J., Beer, H., Rüthi, M., Zumsteg, I., & Vetter, A. (2006). Precise determination of Sr-89 and Sr-90/Y-90 in various matrices: the LSC 3-window approach. In LSC 2005, Advances in Liquid Scintillation Spectrometry, 17–21 October (pp. 237–249).Katowice, Poland: Radiocarbon.
- 8. Jakopič, R., & Benedik, L. (2005). Tracer studies on Sr resin and determination of 90Sr in environmental samples. Acta Chim. Slov., 52(3), 297–302.
- 9. Vajda, N., & Kim, C. K. (2010). Determination of radiostrontium isotopes: A review of analytical methodology. Appl. Radiat. Isot., 68(12), 2306–2326.https://doi.org/10.1016/j.apradiso.2010.05.013.
- 10. Rosický, L., & Hála, J. (1983). Solvent extraction ofyttrium(III) by TBP from acidic organic-aqueous solutions. J. Radioanal. Chem., 80(1/2), 43–48. https://doi.org/10.1007/BF02517645.
- 11. Solecki, J., Misztal, M., Skupiński, S., & Solecki, M. (2015). Determination of radionuclides in samples of middle-aged and older human femurs. J. Environ. Radioact., 143, 85–90. https://doi.org/10.1016/j.jenvrad.2015.01.021.
- 12. Zhu, S., Ghods, A., Veselsky, J. C., Mirna, A., & Schelenz, R. (1990). Interference of 91Y with the rapid determination of 90Sr originating from the Chernobyl fallout debris. Radiochim. Acta, 51(4), 195–198. https://doi.org/10.1524/ract.1990.51.4.195.
- 13. Zalewska, T., Saniewski, M., Suplińska, M., & Rubel, B. (2016). 90Sr in fish from the southern Baltic Sea, coastal lagoons and freshwater lake. J. Environ. Radioact., 158–159, 38–46. https://doi.org/10.1016/j.jenvrad.2016.03.024.
- 14. Horwitz, P. E., Dietz, M. L., & Chiarizia, R. (1992). A novel strontium-selective extraction chromatographic resin. Solv. Extr. Ion Exch., 10(2), 313–336. https://doi.org/10.1080/07366299208918107.
- 15. Vajda, N., Ghods-Esphahani, A., Cooper, E., & Danesi, P. R. (1992). Determination of radiostrontium in soil samples using a crown ether. J. Radioanal. Nucl. Chem.-Artic., 162(2), 307–323. https://doi.org/10.1007/BF02035392
- 16. Pant, A. D., Ruhela, R., Tomar, B. S., & Anilkumar, S. (2019). Determination of 90Sr in environmental samples using solid phase extraction chromatography. J. Radioanal. Nucl. Chem., 322(1), 49–55. https://doi.org/10.1007/s10967-019-06546-1.
- 17. Swearingen, K. J., & Wall, N. A. (2019). Fast and accurate simultaneous quantification of strontium-90 and yttrium-90 using liquid scintillation counting in conjunction with the Bateman equation. J. Radioanal. Nucl. Chem., 320(1), 71–78. https://doi.org/10.1007/s10967-01 9-06444-6.
- 18. Eichrom Technologies. (2014). Stron tium-89/90 in water. Available from https://www.eichrom.com/wp-content/uploads/2018/02/srw01-15_sr-water.pdf.
- 19. Currie, L. A. (1968). Limits for qualitative detection and quantitative determination: Application to radiochemistry. Anal. Chem., 40(3), 586–593. https://doi.org/10.1021/ac60259a007.
- 20. Magnusson, B., Näykki, T., Hovind, H., Krysell, M., & Sahlin, E. (2017). Handbook for calculation of measurement uncertainty in environmental laboratories. Ver. 4.0. Nordtest, Denmark. (Nordtest Report TR 537).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6ce3c1a-8ba7-42ee-bb05-628abdbf18b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.