PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biodegradation Behaviour of Different Textile Fibres: Visual, Morphological, Structural Properties and Soil Analyses

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Biodegradacja tkanin wykonanych z różnych typów włókien pod kątem, ocena właściwości wizualnych, morfologicznych, strukturalnych oraz analiza gleby
Języki publikacji
EN
Abstrakty
EN
The biodegradation of fabrics of various types of fibres: cotton (CO), viscose (CV), Modal (CMD), Tencel (CLY), polylactic acid (PLA), polyethylene teraphtalate (PET) and polyacrylonitrile (PAN)) under the attack of microorganisms were studied using the soil burial method for two different burial intervals (1 month and 4 months). As opposed to previous studies, all analyses were simultaneously conducted for both of the buried fabrics and soil samples so as to examine the biodegradation and environmental effect as a whole in the same study. Visual observations, weight losses, fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to examine the biodegradation behaviour. The total organic carbon (TOC), the total number of bacteria and the total number of fungi in the soil samples were studied to understand the soil content during the degradation of the fibres. The study revealed that the cellulosic fabric samples changed both physically and chemically even after 1 month. Among the cellulosic fibres, weight losses of modal, cotton, and viscose fabrics were close to 90%, showing high degradation, whereas Tencel fibre had the lowest with 60% for a 4 month burial interval. Within the synthetic fabrics, only PLA fabric lost weight.
PL
W pracy badano proces biodegradacji tkanin wykonanych z różnych typów włókien, wytworzonych z różnych polimerów, takich jak: bawełna (CO), wiskoza (CV), modal (CMD), Tencel (CLY), kwas polimlekowy (PLA), poli(tereftalan etylenu) (PET) i poliakrylonitryl (PAN). Badań dokonano przy zastosowaniu mikroorganizmów zakopując próbki w glebie dla dwóch różnych okresów: 1 i 4 miesiące. W celu zbadania procesu biodegradacji, niezależnie od wcześniejszych badań, wszystkie analizy przeprowadzono jednocześnie dla obu zakopanych tkanin i rodzajów gleby. Do zbadania procesu biodegradacji wykorzystano obserwacje wzrokowe, ubytki masy, spektroskopię w podczerwieni z transformatą Fouriera (FTIR) i skaningową mikroskopię elektronową (SEM). Następnie zbadano całkowitą ilość węgla organicznego (TOC), liczbę bakterii i liczbę grzybów w próbkach gleby. Badania wykazały, że próbki tkanin celulozowych zmieniały się zarówno fizycznie, jak i chemicznie nawet po 1 miesiącu. Spośród włókien celulozowych ubytki masy tkanin modalnych, bawełnianych i wiskozowych były zbliżone do 90%, co wskazuje na wysoką degradację, podczas gdy włókna Tencel miały najniższy 60% ubytek masy w okresie 4 miesięcy. W przypadku tkanin syntetycznych utrata masy występowała tylko w przypadku tkaniny PLA.
Słowa kluczowe
Rocznik
Strony
100--111
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Dokuz Eylül University, Department of Textile Engineering, İzmir, Turkey
  • Dokuz Eylül University, Graduate School of Natural and Applied Science, İzmir, Turkey
Bibliografia
  • 1. Yogita Agrawal, Shyam Barhanpurkar and Ajay Joshi, Recycle Textiles Waste, p:1-9, https://static.fibre2fashion.com/ ArticleResources/PdfFiles/68/6798.pdf, June 2018  
  • 2. Council for Textile Recycling, www. weardonaterecycle.org.index.html, June 2018.  
  • 3. Rana S, Pichandi S, Parveen S, Fangueiro R. Biodegradation Studies of Textiles and Clothing Products, Roadmap to Sustainable Textiles and Clothing, edited by Muthu, S.S., Textile Science and Clothing Technology 2014; DOI: 10.1007/978-981-287-110-7-4.  
  • 4. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of Plastics. International Journal of Molecular Sciences 2009; 10(9): 3722-3742.  
  • 5. Kelsey DR, Scardino BM, Grebowicz JS, Chuah HH. High Impact, Amorphous Terephthalate Copolyesters of Rigid 2,2,4,4-Tetramethyl-1,3-cyclobutanediol with Flexible Diols. Macromolecules 2000; 33(16): 5810-5818.  
  • 6. Chung Hee Park, Yun Kyung Kang Seung Soon Im. Biodegradability of Cellulose Fabrics, Journal of Applied Polymer Science 2004; 94: 248-253.  
  • 7. Ledin M. Accumulation of metals by microorganisms – processes and importance for soil systems. Earth-Science Reviews 2000; 51(1-4): 1-31.  
  • 8. Arutchelvi J, Sudhakar M, Arkatkar A et al. Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 2008; 7: 9-22.  
  • 9. Li L, Frey M, Browning KJ. Biodegradability Study on Cotton and Polyester Fabrics. Journal of Engineered Fibers and Fabrics 2010; 5(4): 42-53.
  • 10. Solazzo C, Dyer JM, Clerens S, Plowman J, Peacock EE, Collins MJ. Proteomic evaluation of the biodegradation of wool fabrics in experimental burials. International Biodeterioration & Biodegradation 2013; 80: 48-59.
  • 11. Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polymer Testing 2013; 32(5): 918- 926.
  • 12. Arshad K, Skifvars M, Vera V, Julija V. Biodegradation of natural textile materials in soil. Tekstilec 2014; 57(2): 118-132.
  • 13. ASTM D3776/D3776M-09a. Standard Test Methods for Mass Per Unit Area (Weight) of Fabric, 2017.
  • 14. ASTM D1777 – 96. Standard Test Method for Thickness of Textile Materials, 2015.
  • 15. ASTM D8007-15.Standard Test Method for Wale and Course Count of Weft Knitted Fabrics.
  • 16. ISO 11721-1:2001. Textiles – Determination of resistance of cellulose-containing textiles to micro-organisms – Soil burial test – Part 1: Assessment of rot-retardant finishing.
  • 17. Yaacob ND, Ismail H, Ting SS. Soil Burial of Polylactic acid/Paddy straw powder biocomposite. Bioresources 2016; 11(1): 1255-1269.
  • 18. Luckachan GE, Pillai CKS. Biodegradable Polymers – A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment 2011; 19(3): 637-676.
  • 19. http://www.lenzing-fibers.com/en/tencel/ hygienic/, 03 March 2018.
  • 20. Jeyakodi Moses J, Gnanapriya K. Properties of Modal Fabric after Formic Acid Treatment. JECET, March 2016, Sec. A; 5. No.2, 31-44.
  • 21. Yiwang Chen, Licheng Tan, Lie Chen; Yan Yang, Xiaofeng Wang. Study on biodegradable aromatic/aliphatic copolyesters. Braz. J. Chem. Eng. 2008; 25 2 São Paulo, http://dx.doi.org/10.1590/ S0104-66322008000200011.
  • 22. Karamanlioglu M, Preziosi R, Robson GD. Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): A review. 2017; 37: 122-130.
  • 23. Kılınç AÇ, Atagür M, Ozdemir O, Sen I, Kuçukdoğan N, Sever K, Sarıkanat M, Seki Y. Manufacturing and characterization of vine stem reinforced high density polyethylene composites. Composites Part B 2016; 91: 267-274.
  • 24. Carillo F, Colom X, Sunol JJ, Saurino J. Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal 2004; 40(9): 2229-2234.
  • 25. Seki Y,Seki Y, Sarıkanat M, Sever K, Durmuşkahya C, Bozacı E. Evaluation of linden fibre as a potential reinforcement material for polymer composites. Journal of Industrial Textiles 2016; 45(6): 1221-1238.
  • 26. Oh SY, Yoo DI, Shin Y, Seo G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research 2005; 340(3): 417-428.
  • 27. Zhou D, Zhang L, Guo S. Mechanisms of lead biosorption on cellulose/chitin beads. Water Research 2005; 39(16), 3755-3762.
  • 28. Yang G, Zhang L, Liu Y. Structure and microporous formation of cellulose/silk fibroin blend membranes: I. Effect of coagulants. Journal of Membrane Science, 2000177(1-2), 153-161.
  • 29. Tomsic B, Simoncic B, Orel B, Vilcnik A, Spreizer H. Biodegradability of cellulose fabric modified by imidazolidinone, Carbohydrate polymers 2007; 69(3): 478- 488.
  • 30. Tomsic B, Klemencic D, Simoncic B, Orel B. Influence of antimicrobial finishes on the biodeterioration of cotton and cotton/polyester fabrics: Leaching versus bio-barrier formation. Polymer Degradation and Stability 2011; 96(7): 1286-1296.
  • 31. Xiao X, Chen F, Wei Q, Wu N. Surface modification of polyester nonwoven fabrics by Al2O3 sol–gel coating. Journal of Coatings Technology and Research 2009; 6: 537.
  • 32. Donelli I, Taddei P, Smet PF, Poelman D, Nierstrasz VA, Freddi G. Enzymatic Surface Modification and Functionalization of PET: A Water Contact Angle, FTIR, and Fluorescence Spectroscopy Study. Biotechnology and Bioengineering 2009; 103 (5): 845-856.
  • 33. Huang W, Jang J. Hydrophilic Modification of PET Fabric via Continuous Photografting of Acrylic Acid (AA) and Hydroxyethyl Methacrylate (HEMA). Fibers and Polymers 2009, 10 (1), 27-33.
  • 34. Kamel MM, El Zawahry MM, Helmy H, Eid MA. Improvements in the dyeability of polyester fabrics by atmospheric pressure oxygen plasma treatment. The Journal of the Textile Institute2011; 102 (3): 220-231.
  • 35. Pamula E, Blazewicz M, Paluszkiewicz C, Dobrzynski P. FTIR study of degradation products of aliphatic polyesters–carbon fibres composites. Journal of Molecular Structure 2001; 596(1-3): 69-75.
  • 36. Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon 2003, 41(14): 2805-2812.
  • 37. Farsani RE, Raissi S, Shokuhfar A, Sedghi A. FT-IR Study of Stabilized PAN Fibers for Fabrication of Carbon Fibers. International Journal of Mechanical and Mechatronics Engineering 2009; 3(2): 161-164.
  • 38. Alshehrei F. Biodegradation of Synthetic and Natural Plastic by Microorganisms. Journal of Applied & Environmental Microbiology 2017; 5(1): 8-19.
  • 39. Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: A question of microbial competition. Soil Biology and Biochemistry 2003; 35(6): 837- 843
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6cca53e-71ac-4685-836e-8ac6ebf4e588
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.