PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of the computer tomography algorithms in examination of the internal structure of materials with non-transparent elements by using the incomplete information

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper: The effectiveness of computer tomography algorithms applied for reconstructing the internal structure of objects containing the non-transparent elements is discussed, in conditions of the incomplete information about the examined object. Design/methodology/approach: Problem of the internal structure examination of an object with non-transparent elements, without its destruction, is considered by means of the classical and non-classical algebraic algorithms of computer tomography used in standard approaches and in cases of incomplete projection data. Findings: Computer tomography algorithms, known from literature and designed by the authors, are tested in solving the problems of reconstructing the discrete objects of high contrast with non-transparent elements, with regard to their precision, convergence and utility. Carried out research indicate that the chaotic algorithms are more efficient, for the same values of parameters, in comparison with the corresponding classical algorithms. Practical implications: Problems considered in the paper can arise in some technical issues, for example, in exploring the coal interlayers in looking for the compressed gas reservoirs which can be dangerous for the people’s life and health, in which application of the standard algorithms of computer tomography is impossible for some reasons (like size of the examined object, its localization or its accessibility). Originality/value: In the paper the originally designed by the authors reconstruction algorithms are presented which appear to be more effective than the standard algebraic algorithms adapted for solving problems with the incomplete projection data.
Rocznik
Strony
285--298
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Institute of Mathematics, Silesian University of Technology, ul. Kaszubska 23, 44-100 Gliwice, Poland
autor
  • Institute of Mathematics, Silesian University of Technology, ul. Kaszubska 23, 44-100 Gliwice, Poland
  • Institute of Mathematics, Silesian University of Technology, ul. Kaszubska 23, 44-100 Gliwice, Poland
Bibliografia
  • [1] D. Patella, Introduction to ground surface self-potential tomography, Geophysical Prospecting 45 (1997) 653-681.
  • [2] R.A. Williams, K. Atkinson, S.P. Luke, R.K. Barlow, B.C. Dyer, J. Smith, M. Manning, Applications for tomographic technology in mining, minerals and food engineering, particle and particle systems characterization 12 (2004) 105-111.
  • [3] A.H. Andersen, Algebraic Reconstruction in CT from limited views, IEEE Transactions on Medical Imaging 8 (1989) 50-55.
  • [4] H. Guan, R. Gordon, Computed tomography using algebraic reconstruction techniques with different projection access schemes: a comparison study under practical situation, Physics in Medicine and Biology 41 (1996) 1727-1743.
  • [5] M.R. Trummer, A note on the ART of relaxation, Computing 33 (1984) 349-352.
  • [6] Y. Censor, Parallel optimization: theory, Algorithms, and Applications, New York Oxford Oxford University Press, 1997.
  • [7] G.M. Baudet, Asynchronous iterative methods for multiprocessors, Journal of the Association for Computing Machinary 25 (1978) 226-244.
  • [8] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Prentice-hall, Englewood Cliffs, NJ, 1989.
  • [9] D. Chazan, W. Miranker, Chaotic relaxation, Linear Algebra and Its Applications 2 (1969) 199-222.
  • [10] Y. Censor, Parallel application of block-iterative methods in medical imaging and radiation therapy, Mathematical Programming 42 (1988) 307-325.
  • [11] A.R. De Pierro, A.N. Iusem, A parallel projection method of finding a common point of a family of convex sets, Pesquisa Operacional 5 (1985) 1-20.
  • [12] R. Bru, L. Elsner, M. Neumann, Models of parallel chaotic iteration methods, Linear Algebra and Its Applications 103 (1988) 175-192.
  • [13] N. Gubareni, Computed methods and algorithms for computer tomography with limited number of projection data, Naukova Dumka, Kiev, 1997 (in Russian).
  • [14] N. Gubareni, M. Pleszczyński, Image reconstruction from incomplete projection data by means of iterative algebraic algorithms, Proceedings of the International Multi-conference on Computer Science and Information Technology, Wisła, 2007.
  • [15] N. Gubareni, M. Pleszczyński, Chaotic iterative algorithms for image reconstruction from incomplete projection data, Electronic Modelling 30 (2008) 29-43.
  • [16] N. Gubareni, M. Pleszczyński, Block-parallel chaotic algorithms for image reconstruction, Electronic Modeling 31 (2009) 41-54.
  • [17] M. Pleszczyński, Badanie efektywności algorytmów rekonstrukcyjnych tomografii komputerowej przy niepełnym zbiorze danych, praca doktorska, Częstochowa, 2009.
  • [18] R. Grzymkowski, E. Hetmaniok, M. Pleszczyński, A. Zielonka, Application of the computer tomography in examination of the internal structure of materials by considering the specific conditions of the problem, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 288-298.
  • [19] M.N. El Tarazi, Algorithmes mixtes asynchrones, Etude de la convergence monotone, Numerische Mathematik 44 (1984) 363-369.
  • [20] S. Helgason, The radon transform, Springer-Verlag, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6ca7239-1b1a-460f-89a7-d44db3bbcf50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.