PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the constrained and unconstrained controllability of semilinear Hilfer fractional systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper finite-dimensional semilinear dynamical control systems described by fractional-order state equations with the Hilfer fractional derivative are discussed. The formula for a solution of the considered systems is presented and derived using the Laplace transform. Bounded nonlinear function f depending on a state and controls is used. New sufficient conditions for controllability without constraints are formulated and proved using Rothe’s fixed point theorem and the generalized Darbo fixed point theorem. Moreover, the stability property is used to formulate constrained controllability criteria. An illustrative example is presented to give the reader an idea of the theoretical results obtained. A transient process in an electrical circuit described by a system of Hilfer type fractional differential equations is proposed as a possible application of the study.
Rocznik
Strony
155--178
Opis fizyczny
Bibliogr. 48 poz., rys., wzory
Twórcy
autor
  • Department of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
Bibliografia
  • [1] S. Abbas, M. Benchohra, N. Hamidi, and J.J. Nieto: Hilfer and Hadamard fractional differential equations in Fréchet spaces. TWMS Journal of Pure and Applied Mathematics, 10(1), (2019), 102-116.
  • [2] A. Aghajani, J. Banaś, and N. Sabzali: Some generalizations of Darbo fixed point theorem and applications. Bulletin of the Belgian Mathematical Society - Simon Stevin, 20(2), (2013), 345-358. DOI: 10.36045/bbms/1369316549.
  • [3] K. Balachandran, J.Y. Park, and J.J. Trujillo: Controllability of nonlinear fractional dynamical systems. Nonlinear Analysis, 75(4), (2012), 1919-1926. DOI: 10.1016/j.na.2011.09.042.
  • [4] J. Banaś: On measures of noncompactness in Banach space. Commentationes Mathematicae Universitatis Carolinae, 21(1), (1980), 131-143.
  • [5] R. Caponetto, G. Dongola, L. Fortuna, and I. Petrás: Fractional Order Systems: Modeling and Control Applications, In: World Scientific Series on Nonlinear Science, 72, 2010. DOI: 10.1142/7709.
  • [6] C. Dacka: On the controllability of a class of nonlinear systems. IEEE Transactions on Automatic Control, 25(2), (1980), 263-266. DOI: 10.1109/TAC.1980.1102287.
  • [7] A. Debbouche and D.F.M. Torres: Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces. International Journal of Control, 86(9), (2013), 1577-1585. DOI: 10.1080/00207179.2013.791927.
  • [8] K.M. Furati, M.D. Kassim and N.E-. Tatar: Existence and uniqueness for a problem involving Hilfer fractional derivative. Computers & Mathematics with Applications, 64(6), (2012), 1616-1626. DOI: 10.1016/j.camwa.2012.01.009.
  • [9] F. Ge, Y. Chen, C. Kou, and I. Podlubny: On the regional controllability of the sub-diffusion process with Caputo fractional derivative. Fractional Calculus and Applied Analysis, 19 (2016), 1262-1281. DOI: 10.1515/fca-2016-0065.
  • [10] E. Gerolymatou, I. Vardoulakis, and R. Hilfer: Modelling infiltration by means of a nonlinear fractional diffusion model. Journal of Physics D: Applied Physics, 39 (2006), 4104-4110. DOI: 10.1088/0022-3727/39/18/022.
  • [11] A. Haq: Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives. Chaos, Solitons & Fractals, 157 (2022), 111923. DOI: 10.1016/j.chaos.2022.111923.
  • [12] A. Haq and N. Sukavanam: Existence and partial approximate controllability of nonlinear Riemann-Liouville fractional systems of higher order. Chaos, Solitons & Fractals, 165 (2022), 112783. DOI: 10.1016/j.chaos.2022.112783.
  • [13] R. Hilfer: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.
  • [14] R. Hilfer: Experimental evidence for fractional time evolution in glass forming materials. Chemical Physics, 284(1-2), (2002), 399-408. DOI: 10.1016/S0301-0104(02)00670-5.
  • [15] R. Hilfer, Y. Luchko, and Ž. Tomovski: Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives. Fractional Calculus & Applied Analysis, 12(3), (2009), 299-318.
  • [16] G. Isac: On Rothe’s fixed point theorem in a general topological vector space. An. St. Univ. Ovidius Constanta, 12, (2004), 127-134 .
  • [17] E. Iturriaga and H. Leiva: A characterization of semilinear surjective operators and applications to control problems. Applied Mathematics, 1(4), (2010), 265-273. DOI: 10.4236/am.2010.14033.
  • [18] T. Kaczorek: Realization problem for fractional continuous-time systems. Archives of Control Sciences, 18(1), (2008), 43-58.
  • [19] T. Kaczorek: Selected Problems of Fractional Systems Theory. Lecture Notes in Control and Information Science, 411, 2011.
  • [20] T. Kaczorek: A new method for computation of positive realizations of fractional linear continuous-time systems. Archives of Control Sciences, 28(4), (2018), 511-525. DOI: 10.24425/acs.2018.125481.
  • [21] K. Kavitha, V. Vijayakumar, R. Udhayakumar, N. Sakthivel, and K.S. Nisar: A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Mathematical Methods in the Applied Science, John Wiley & Sons, 2020, pp. 1-20. DOI:10.1002/mma.7040.
  • [22] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, 2006.
  • [23] J. Klamka: Controllability of Dynamical Systems. Kluwer Academic Publishers, 1991.
  • [24] K.D. Kucche, A. Fernandez, and H.M. Fahad: On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations. Chaos, Solitons & Fractals, 163, (2022). DOI: 10.1016/j.chaos.2022.112547.
  • [25] V. Kumar, M. Malik, and D. Baleanu: Results on Hilfer fractional switched dynamical system with non-instantaneous impulses. Pramana - Journal of Physics, 96, 172 (2002). DOI: 10.1007/s12043-022-02411-1.
  • [26] H. Leiva: Rothe’s fixed point theorem and controllability of semilinear nonautonomous systems. Systems and Control Letters, 67(1), (2014), 14-18. DOI: 10.1016/j.sysconle.2014.01.008.
  • [27] A. Monje, Y. Chen, B.M. Viagre, D. Xue and V. Feliu: Fractional-order Systems and Controls. Fundamentals and Applications. Springer-Verlag, 2010.
  • [28] R.J. Nirmala, K. Balachandran, L. Rodriguez-Germa, and J.J. Trujillo: Controllability of Nonlinear Fractional Delay Dynamical Systems. Reports on Mathematical Physics, 77(1), (2016), 87-104. DOI: 10.1016/S0034-4877(16)30007-6.
  • [29] R.J. Nirmala and K. Balachandran: The Controllability of Nonlinear Implicit Fractional Delay Dynamical Systems. International Journal of Applied Mathematics and Computer Science, 27(3), (2017), 501-513. DOI: 10.1515/amcs-2017-0035.
  • [30] I. Podlubny: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. In: Mathematics in Science and Engineering, Academic Press, 1999.
  • [31] B. Radhakrishnan and T. Sathya: Controllability of Hilfer fractional Langevin dynamical system with impulse in an abstract weighted space. Journal of Optimization Theory and Applications, 195(1), (2022), 265-281. DOI: 10.1007/s10957-022-02081-4.
  • [32] H. Rezazadeh, H. Hossein Aminikhah, and A.H. Refahi Sheikhani: Stability analysis of Hilfer fractional differential systems. Mathematical Communications, 21 (2016), 45-64.
  • [33] M. Różański, B. Sikora, A. Smuda, and R. Wituła: On theoretical and practical aspects of Duhamel’s integral. Archives of Control Sciences, 31(4), (2021), 815-847. DOI: 10.24425/acs.2021.139732.
  • [34] J. Sabatier, O.P. Agrawal, and J.A. Tenreiro Machado: Advances in Fractional Calculus. In: Theoretical Developments and Applications in Physics and Engineering. Springer-Verlag, 2007.
  • [35] R. Sakthivel, Y. Ren, and N.I. Mahmudov: On the approximate controllability of semilinear fractional differential systems. Computers and Mathematics with Applications, 62(3), (2011), 1451-1459. DOI: 10.1016/j.camwa.2011.04.040.
  • [36] S.G. Samko, A.A. Kilbas, and O.I. Marichev: Fractional integrals and derivatives: theory and applications. Gordan and Breach Science Publishers, 1993.
  • [37] H. Sheng, Y.Q. Chen, and T.S. Qiu: Fractional Processes and Fractional-Order Signal Processing. Springer, New York, 2012.
  • [38] B. Sikora and J. Klamka: Cone-type constrained relative controllability of semilinear fractional systems with delays. Kybernetika, 53(2), (2017), 370-381. DOI: 10.14736/kyb-2017-2-0370.
  • [39] B Sikora: On application of Rothe’s fixed point theorem to study the controllability of fractional semilinear systems with delays. Kybernetika, 55(4), (2019), 675-698. DOI: 10.14736/kyb-2019-4-0675.
  • [40] B. Sikora and N. Matlok: On controllability of fractional positive continuous-time linear systems with delay. Archives of Control Sciences, 31(1), (2021), 29-51. DOI: 10.24425/acs.2021.136879.
  • [41] V. Singh: Controllability of Hilfer fractional differential systems with nondense domain. Numerical Functional Analysis and Optimization, 40(13), (2019), 1572-1592. DOI: 10.1080/01630563.2019.1615947.
  • [42] J.D.R. Smart: Fixed Points Theorems. Cambridge University Press, 1974.
  • [43] H.M. Srivastava and Ž. Tomovski: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Applied Mathematics and Computation, 211(1), (2009), 198-210. DOI: 10.1016/j.amc.2009.01.055.
  • [44] J. Tokarzewski: Zeros and the output-zeroing problem in linear fractional order systems. Archives of Control Sciences, 18(4), (2008), 437-451.
  • [45] V. Vijayakumar and R. Udhayakumar: A new exploration on existence of Sobolev-type Hilfer fractional neutral integro-differential equations with infinite delay. Numerical Methods for Partial Differential Equations, (2020), 1-17. DOI: 10.1002/num.22550.
  • [46] B.J. West, M. Bologna, and P. Grigolini: Physics of Fractal Operators. Springer, New York, 2003.
  • [47] A. Wongcharoen, K. Sotiris, S.K. Ntouyas, and J. Tariboon: Boundary value problems for Hilfer fractional differential inclusions with nonlocal integral boundary conditions. Mathematics, 8(11), (2020), 1905. DOI: 10.3390/math8111905.
  • [48] G. Zhang, T. Zhang, and T. Zhang: Fixed point theorems of Rothe and Altman types about convex-power condensing operator and application. Applied Mathematics and Computation, 214, (2009), 618-623. DOI: 10.1016/j.amc.2009.04.033.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6c664a4-dac9-4613-b855-5d0fe2db25a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.