PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research of 316L metallic powder for use in SLM 3D printing

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
3D metal printing is an increasingly popular production of steel parts. The most widespread and most accurate method is SLM (Selective Laser Melting), which uses metallic powder as the input material. The article is dedicated to researching the supplied powder from Renishaw. The powder is made by gas atomization and 3 phases of powder (virgin, sift and waste) that are present in the SLM process are examined. Powder morphology by SEM electron microscopy is investigated and the porosity of the powder is measured by optical method. Next, the powder grain size fraction is examined. In conclusion, there are recommendations and other directions of possible research. The main quantitative result from research is that, in general, small particles are reduced in the sift powder and the number of larger particles is increased, but the powder is still usable for further use.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 17, tab., rys.
Twórcy
autor
  • VSB - Technical University of Ostrava, Faculty of Mechanical Engineering, 708 33, Ostrava, Czech Republic
autor
  • VSB - Technical University of Ostrava, Faculty of Mechanical Engineering, 708 33, Ostrava, Czech Republic
autor
  • VSB - Technical University of Ostrava, Faculty of Mechanical Engineering, 708 33, Ostrava, Czech Republic
autor
  • VSB - Technical University of Ostrava, Faculty of Mechanical Engineering, 708 33, Ostrava, Czech Republic
autor
  • VSB - Technical University of Ostrava, Faculty of Mechanical Engineering, 708 33, Ostrava, Czech Republic
Bibliografia
  • 1. Cruz V., Chao Q., Birbilis N., Fabijanic D., Hodgson P. D., & Thomas S.: Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting. Corrosion Science, 164 (2020), 108314.
  • 2. Larimian T., Kannan M., Grzesiak D., AlMangour B., & Borkar T.: Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A, (2020), 770, 138455.
  • 3. Simmons J. C., Chen X., Azizi A., Daeumer M. A., Zavalij P. Y., Zhou G., & Schiffres S. N.: Influence of processing and microstructure on the local and bulk thermal conductivity of selective laser melted 316L stainless steel. Additive Manufacturing, 32 (2020), 100996.
  • 4. Karapatis P. A.: Sub-process approach of selective laser sintering. PhD thesis, Ecole Polytechnique federal de Lausanne, (2002).
  • 5. Meiners W.: Direktes Selektives Laser Sintern einkomponentiger metallisher Werkstoffe. PhD thesis, Rheinisch-Westfaelische Technische Hochschule Aachen, (1999).
  • 6. Ni X., Kong D., Wu W., Zhang L., Dong C., He B., Zhu D.: Corrosion behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds. Journal of Materials Engineering and Performance, 27(7), (2018), 3667-3677.
  • 7. Arrizubieta J. I., Ukar O., Ostolaza M., & Mugica A.: Study of the environmental implications of using metal powder in additive manufacturing and its handling. Metals, 10(2), (2020), 261.
  • 8. Slowntiski J. A., Garboczsi E. J.: Metrology needs for metal additive manufacturing powders. JOM, 67(3), (2015), 538-543.
  • 9. ISO/ASTM 52900:2015. Additive manufacturing - General principles - Terminology.
  • 10. Pinto F. C., Souza Filho I. R., Sandim M. J. R., & Sandim H. R. Z.: Defects in parts manufactured by selective laser melting caused by δ-ferrite in reused 316L steel powder feedstock. Additive Manufacturing, 31, (2020), 100979.
  • 11. SS 316L - 047: Powder for additive manufacturing. RENISHAW: apply innovation. United Kingdom: Renishaw, (2015).
  • 12. Zhong C., Biermann T., Gasser A., Poprawe, G.: Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate laser metal deposition. Journal of Laser Applications, (2015), 27(4), 042003-1-042003-8.
  • 13. Markusson L.: Powder Characterization for Additive Manufacturing Processes. Master thesis. Luleå University of Technology, (2017).
  • 14. Hajnys J.: Research into the effect of finishing operations on modification of utility properties of components produced by additive. PhD thesis. VSB - Technical University of Ostrava, Faculty of Mechanical Engineering, (2019).
  • 15. Shi W., Wang P., Liu Y., Hou Y., & Han G. : Properties of 316L formed by a 400 W power laser Selective Laser Melting with 250 μm layer thickness. Powder Technology, 360, (2020), 151-164.
  • 16. Dursun G., Ibekwe S., Li G., Mensah P., Joshi G., & Jerro D.: Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting. Materials Today: Proceedings, (2020) (in press).
  • 17. Oh W. J., Lee W. J., Kim M. S., Jeon J. B., & Shim D. S.: Repairing additive-manufactured 316L stainless steel using direct energy deposition. Optics & Laser Technology, 117, (2019), 6-17.
Uwagi
1. This paper has been completed in connection with project Innovative and additive manufacturing technology – new technological solutions for 3D printing of metals and composite materials, reg. no. CZ.02.1.01/0.0/0.0/17_049/0008407 financed by Structural Funds of the European Union and project.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6c5f67f-fa27-4dad-a807-0e9276600883
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.