PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Extraction of the Spatial and Temporal Surface Water Bodies Using High Resolution Remote Sensing Technology at Cardiff City, United Kingdom

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since surface water is such a vital component to ecosystem health and human well-being, knowing where it can be found is of paramount importance. Moderate and low-resolution satellite photos are widely used for this purpose because to their practicality in large-scale implementation. However, very high-resolution (VHR) satellite pictures are required for the detection and analysis of more intricate surface water features and small water bodies. Extraction of water from VHR pictures on a wide scale necessitates efficient and reliable technologies. Cardiff City in Wales, United Kingdom is the area under investigation for the Enhanced Water Index (EWI) which will through this index can detect the surface water bodies (SWBs). The Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus ETM+, and Operational Land Imager OLI Landsat images have been analyzed to extract SWBs over the years 1974, 1984, 1994, 2004, 2014, and 2023. Results shows that the years 1974, 1994, and 2014 have less SWBs regions compared to the years 1984, 2004, and 2023. Regions suffer from dry were larger than those contain water in the years 1974, 1994, and 2014, while in the years 1984, 2004, and 2023, SWBs were very large, leaving behind small areas that suffered from drought. It can expect from this study that the return period of dryness or wetness may happen every 20 years. This research can be used as a reference when developing new methods for extracting water body information from VHR photos, and it can be used to the mapping of water bodies in other broad regions.
Rocznik
Strony
135--147
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Structures and Water Resources Engineering Department, Faculty of Engineering, University of Kufa, Al-Najaf, Iraq
  • Department of Civil Engineering, College of Engineering, University of Misan, Misan, Amarah 62001, Iraq
  • Department of Civil Engineering, Faculty of Engineering, University of Babylon, Babil, Iraq
Bibliografia
  • 1. Acharya, T.D., Subedi, A., Huang, H., Lee, D.H. 2019. Application of water indices in surface water change detection using Landsat imagery in Nepal. Sens. Mater., 31, 1429–1447.
  • 2. Alam, A., Bhat, M.S., Maheen, M. 2020. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85(6), 1529–1543.
  • 3. Allen, G.H., Pavelsky, T.M. 2018. Global extent of rivers and streams. Science, 361, 585–588.
  • 4. Aznarez, C., Jimeno-Sáez, P., López-Ballesteros, A., Pacheco, J. P., Senent-Aparicio, J. 2021. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens., 13, 2014.
  • 5. Bretreger, D., Yeo, I.-Y., Kuczera, G., Hancock, G. 2021. Remote sensing’s role in improving transboundary water regulation and compliance: The Murray-Darling Basin. Australia. J. Hydrol., 13, 100–112.
  • 6. Cao, H.Y., Han, L., Liu, Z.H., Li, L.Z. 2021. Monitoring and driving force analysis of spatial and temporal change of water area of Hongjiannao Lake from 1973 to 2019. Ecol. Inform., 61, 101230.
  • 7. Cardiff Boasts Record Visitor Numbers During (2017). Business News Wales. 26 March 2018. Archived from the original on 7 July 2018. [Accessed: 30 June 2023].
  • 8. Chen, J., Mueller, V. 2018. Coastal climate change, soil salinity and human migration in Bangladesh. Nat. Clim. Chang., 8, 981–985.
  • 9. Colditz, R.R., Troche Souza, C., Vazquez, B., Wickel, A.J., Ressl, R. 2018. Analysis of optimal thresholds for identification of open water using MODIS-derived spectral indices for two coastal wetland systems in Mexico. Int. J. Appl. Earth Obs. Geoinf., 70, 13–24.
  • 10. Danaher, T., Collett, L. 2006. Development, optimization and multi-temporal application of a simple Landsat based water index. In Proceedings of the 13th Australasian Remote Sensing and Photogrammetry Conference, Canberra, ACT, Australia, 20–24 November.
  • 11. Domeneghetti, A. Schumann, G.J.P., Tarpanelli, A. 2019. Preface: Remote sensing for flood mapping and monitoring of flood dynamics. Remote Sens., 11, 943.
  • 12. Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R. 2014. AutomatedWater Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ., 140, 23–35.
  • 13. Garrido-Rubio, J., Calera, A., Arellano, I., Belmonte, M., Fraile, L., Ortega, T., Bravo, R., González-Piqueras, J. 2020. Evaluation of remote sensing-based irrigation water accounting at river basin district management scale. Remote Sens., 12, 3187.
  • 14. Iowerth, D. 1998. Castell Morgraig. Castle Studies Group Newsletter. Archived from the original on 7 September 2008. [Accessed: 30 June 2023].
  • 15. Lu, Z., Wang, D.Q., Deng, Z.D., Shi, Y., Ding, Z.B., Ning, H., Zhao, H.F., Zhao, J.Z., Xu, H.L., Zhao, X. N. 2021. Application of red edge band in remote sensing extraction of surface water body: A case study based on GF-6 WFV data in arid area. Hydrol. Res., 52, 1526–1541.
  • 16. Malahlela, O.E. 2016. Inland waterbody mapping: Towards improving discrimination and extraction of inland surface water features. Int. J. Remote Sens., 2016, 37, 4574–4589.
  • 17. McFeeters, S.K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens., 17, 1425–1432.
  • 18. Met Office: averages 1971–2000. Met Office website (2009). Met Office. 2009. Archived from the original on 29 September 2007. [Accessed: 30 June 2023].
  • 19. Müller, M.F., Yoon, J., Gorelick, S.M., Avisse, N., Tilmant, A. 2016. Impact of the Syrian refugee crisis on land use and transboundary freshwater resources. Proc. Natl. Acad. Sci., 113, 14932–14937.
  • 20. Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., Calvez, R. 2018. Surface water monitoring in small water bodies: Potential and limits of multi-sensor Landsat time series. Hydrol. Earth Syst. Sci., 22, 4349–4380.
  • 21. Papa, F., Crétaux, J.F., Grippa, M., Robert, E., Trigg, M., Tshimanga, R.M., Kitambo, B., Paris, A., Carr, A., Fleischmann, A.S. 2022. Water resources in Africa under global change: Monitoring surface waters from space. Surv. Geophys., 20, 1–51.
  • 22. Parente, L., Mesquita, V., Miziara, F., Baumann, L., Ferreira, L. (2019). Assessing the Pasturelands and Livestock Dynamics in Brazil from 1985 to 2017: A Novel Approach Based on High Spatial Resolution Imagery and Google Earth Engine Cloud Computing. Remote Sens. Environ., 232, 111301.
  • 23. Radley, J.D., Twitchett, R.J., Mander, L., Cope, J.C.W. 2008. Discussion on palaeoecology of the Late Triassic extinction event in the SW UK”. Journal of the Geological Society. Geological Society of London, 165(5), 988–992.
  • 24. Somasundaram, D., Zhang, F., Ediriweera, S., Wang, S., Li, J., Zhang, B. 2020. Spatial and Temporal Changes in Surface Water Area of Sri Lanka over a 30-Year Period. Remote Sens., 12, 3701.
  • 25. Tariq, A., Shu, H., Kuriqi, A., Siddiqui, S., Gagnon, A.S., Lu, L.L., Linh, N.T.T., Pham, Q.B. 2021. Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images. Remote Sens., 13, 2053.
  • 26. UK Census. 2011. Local Area Report – Cardiff Local Authority (1946157397). Nomis. Office for National Statistics. [Accessed: 30 June 2023].
  • 27. Vinayaraj, P., Imamoglu, N., Nakamura, R., Oda, A. 2018. Investigation on perceptron learning for water region estimation using large-scale multispectral images. Sensors, 18, 4333.
  • 28. Weather at Cardiff Airport (CWL): Weather and Climate in Cardiff Area, Wales, (2009). U. Airports guides website. TravelSmart Ltd. 2009. Archived from the original on 14 September 2009. [Accessed: 30 June 2023].
  • 29. Yamazaki, D., Trigg, M.A., Ikeshima, D. 2015. Development of a global similar to 90 m water body map using multi-temporal Landsat images. Remote Sens. Environ., 171, 337–351.
  • 30. Yan, P., Zhang, Y., Zhang, Y. 2007. A study on information extraction of water enhanced water index (EWI) and GIS system in semi-arid regions with the based noise remove techniques. Remote Sens. Inf., 6, 62–67.
  • 31. Yang, Y., Ruan, R.Z. 2010. Extraction of Plain Lake-Water Body Based on TM Imagery. Remote Sens. Inf., 3, 60–64.
  • 32. Zhang, Q., Wu, B., Yang, Y.K. 2018. Extraction of Open Water in Rugged Area with A Novel Slope Adjusted Water Index. Remote Sens. Inf., 33, 98–107.
  • 33. Zou, Z.H., Xiao, X.M., Dong, J.W., Qin, Y.W., Doughty, R.B., Menarguez, M.A., Zhang, G., Wang, J. 2016. Divergent trends of open surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci., 115, 3810–3815.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6bfc259-a8d9-43dc-8eca-8a96f3928a6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.