PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody wytwarzania tytanu nanokrystalicznego

Autorzy
Identyfikatory
Warianty tytułu
EN
Methods for nanocrystalline titanium fabrication
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono możliwości otrzymywania tytanu nanokrystalicznego metodami dużego odkształcenia plastycznego (SPD). Analiza wyników badań dotyczących rozdrobnienia ziaren tytanu tymi metodami potwierdza dużą efektywność wyciskania hydrostatycznego (HE). HE pozwala na uzyskanie dużej objętości nanokrystalicznego tytanu w formie drutów i prętów o najmniejszych rozmiarach ziaren.
EN
In this study, the methods of producing nanocrystalline titanium using severe plastic deformation technique are described. The results obtained show that the most effective is the hydrostatic extrusion. Hydrostatic extrusion allows to obtain a large volume of nanocrystalline titanium in the form of rods and wires, characterized by the smallest size of the grain.
Rocznik
Strony
134--137
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
  • Wydział Inżynierii Materiałowej, Politechnika Warszawska
Bibliografia
  • [1] Kelsall R. W., Hamley I. W., Geoghe M.: Nanotechnologie. Wydawnictwo Naukowe PWN, Warszawa (2008).
  • [2] Zhao Xicheng, Fu Wenjie, Yang Xirong, Langdon Terence G.: Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature. Scripta Materialia 59 (2008) 542÷545.
  • [3] Wen Ming, Liu Gang, Gu Jian-feng, Guan Wei-ming, Lu Jian: The tensile properties of titanium processed by surface mechanical attrition treatment. Surface and Coatings Technology 202 (19) (2008) 4728÷4733.
  • [4] Stolyarov V. V., Zhu Y. T., Lowe T. C., Islamgaliev R. K., Valiev R. Z.: A two step SPD processing of ultrafine-grained titanium. Nanostructured Materials 11 (7) (1999) 947÷954.
  • [5] Zhernakov V. S., Latysh V. V., Stolyarov V. V., Zharikov A. I., Valiev R. Z.: The developing of nanostructured SPD Ti for structural use. Scripta Materialia 44 (8-9) (2001) 1771÷1774.
  • [6] Sergueeva A.V., Stolyarov V. V., Valiev R. Z., Mukherjee A. K.: Advanced mechanical properties of pure titanium with ultrafine grained structure. Scripta Materialia 45 (2001) 747÷752.
  • [7] Valiev R. Z.: Structure and mechanical properties of ultrafine-grained metals. Materials Science and Engineering A 234-236 (1997) 59÷66.
  • [8] Valiev R. Z., Sergueeva A. V., Mukherjee A. K.: The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scripta Materialia 49 (2003) 669÷674.
  • [9] Ma E.: Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scripta Materialia 49 (2003) 663÷668.
  • [10] Garbacz H.: Mikrostruktura i właściwości nanokrystalicznego tytanu. Prace naukowe, Inżynieria Materiałowa 25, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2010).
  • [11] Gleiter H.: Nanocrystalline materials. Progress in Materials Science 33 (1988) 223÷315.
  • [12] Segal V. M. et al.: Plastic working of metals by Simple Shear. Russ. Metall. (English translation) 1 (1981) 277÷283.
  • [13] Valiev R. Z., Korznikov A. V., Mulyukov R. R.: Structure and properties of ultrafine-grained materiale produced by severe plastic deformation. Mater. Sci. Eng. A 186 (1993) 141÷148.
  • [14] Zhu Y. T., Langdon T. G.: The fundamentals of nanostructured materials processed by severe plastic deformation. JOM October (2004) 58÷63.
  • [15] Estrin Y., Toth L. S., Brecht Y., Kim H. S.: Modelling of the evolution of dislocation cell misorientation under severe plastic deformation. Materials Science Forum 503-504 (2006) 675÷680.
  • [16] Richert M., Korbel A.: The effect of strain localization on mechanical properties of A199,992 in the range of large deformations. Journal of Materials Processing Technology 53 (1995) 331÷340.
  • [17] Humphrey F. J.: A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures. Acta Materialia 45 (10) (1997) 4231÷4240.
  • [18] Richert M., Liu Q., Hansen N.: Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion-compression. Materiale Science and Engineering A 260 (1999) 275÷283.
  • [19] Richert M., Richert J., Zasadziński J., Hawryłkiewicz S., Długopolski J.: Effect of large deformations on the microstructure of aluminium alloys. Materials Chemistry and Physics 81 (2003) 528÷530.
  • [20] Retenberger C., Mangler C., Karnthaler H. P.: Nanostructures in L12-ordered Cu3Au processed by torsion under high pressure. Materials Science and Engineering A 387 (2004) 795÷798.
  • [21] Sabirov I., Pippan R.: Formation of a W-25% Cu nanocomposite during high pressure torsion. Scripta Materialia 52 (2005) 1293÷1298.
  • [22] Segal V. M.: Method and apparatus for intensive plastic deformation of flat billets. Patent of the USSR No 575892 (1977).
  • [23] Saito Y., Utsunomiya H., Tsuji N., Sakai T.: Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process. Acta Materialia 47 (1999) 579.
  • [24] Tsuji N., Ueji R., Minamino Y., Saito Y.: A new and simple process to obtain nanostructured bulk low-carbon steel with superior mechanical property. Scripta Materialia 46 (2002) 305÷310.
  • [25] Garbacz H., Lewandowska M., Pachla W., Kurzydłowski K. J.: Structural and mechanical properties of nanocrystalline titanium and 316LVM steel processed by hydrostatic extrusion. Journal of Microscopy 223 (2006) 272÷274.
  • [26] Pachla W., Kulczyk M., Suś-Ryszkowska M., Mazur A., Kurzydłowski K. J.: Nanocrystalline titanium produced by hydrostatic extrusion. Journal of Material Processing Technology 205 (2008) 173÷82.
  • [27] Popov A. A., Pyshmintsev I. Yu., Demakov S. L., Illarionov A. G., Lowe T. C., Sergeyeva A. V., Valiev R. Z.: Structural and mechanical properties of nanocrystalleve titanium processed by severe plastic deformation. Scripta Materialia 37-7 (1997) 1089÷1094.
  • [28] Stolyarov V. V., Zhu Y. T., Lowe T. C., Valiev R. Z.: Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Materials Science and Engineering A 303 (2001) 82÷89.
  • [29] Nagasekhar A. V., Chakkingal U., Venugopal P.: Candidature of equal channel angular pressing for processing of tubular commercial purity-titanium. J. Mater. Proces. Technol. 173 (2006) 53÷60.
  • [30] Stolyarov V. V., Zhu Y. T., Alexandrov I. V., Lowe T. C., Valiev R. Z.: Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Materials Science and Engineering A 343 (2003) 43÷60.
  • [31] Stolyarov V. V., Zhu Y. T., Alexandrov I. V., Lowe T. C., Valiev R. Z.: Influence of ECAP routes on the microstructure and properties of pure Ti. Materials Science and Engineering A 299 (2001) 59÷67.
  • [32] Kim I., Jeong W. S., Kim J., Park K. T., Shin D. H.: A hybrid spatial diferencing scheme for discrete ordinates method in 2D rectangular enclosures. Scripta Materialia 45 (2001) 575÷586.
  • [33] Jia D., Wang Y. M., Ramesh K. T., Ma E., Zhu Y. T., Valiev R. Z.: Deformation behaviour and plastic instabilities of ultrafine-grained titanium, Applied Physics Letters 79 (2001) 611÷613.
  • [34] Shin D. H., Kim I., Kim J., Zhu Y. T.: Shear strain accommodation during severe plastic deformation of titanium using equal channel angular pressing. Materials Science and Engineering A 334 (2002) 239÷245.
  • [35] Shin D. H., Kim I., Kim J., Kim Y. S., Semiatin S. L.: Microstructure development during equal-channel angular pressing of titanium. Acta Materialia 51 (2003) 983÷996.
  • [36] Kim I., Kim J., Shin D. H., Liao X. Z., Zhu Y. T.: Deformation twins in pure titanium processed by equal channel angular pressing. Scripta Materialia 48 (2003) 813÷817.
  • [37] Zhu Y. T., Kolobov Y. R., Grabovetskaya G. P., Stolyarov V. V., Girsova N. V., Valiev R. Z.: Microstructures and mechanical properties of ultrafine- grained Ti foil processed by equal-channel angular pressing and cold rolling. Journal of Materials Research 18 (2003) 1011÷1016.
  • [38] Zhu Y. T., Huang J. Y., Gubicza J., Unga´r T., Wang Y. M., Ma E., Valiev R. Z.: Nanostructures in Ti processed by severe plastic deformation. Journal of Materials Research 18 (2003) 1908÷1917.
  • [39] Kim I., Kim J., Shin D. H., Park K. T.: Communications: Effects of grain size and pressing speed on the deformation mode of commercially pure Ti during equal channel angular pressing. Metallurgical and Materials Transactions A 34 (7) (2003) 1555÷1558.
  • [40] Stolyarov V. V., Shuster L. Sh., Migranov M. Sh., Valiev R. Z., Zhu Y. T.: Reduction of friction coefficient of ultrafine-grained CP titanium. Materials Science and Engineering A 371 (2004) 313÷317.
  • [41] Ko Y. G., Shin D. H., Park K. T., Lee C. S.: An analysis of the strain hardening behaviour of ultra-fine grain pure titanium. Scripta Materialia 54 (2006) 1785÷1789.
  • [42] Dutkiewicz J., Kuśnierz J., Maziarz W., Lejkowska L., Garbacz H., Lewandowska M., Dobromyslov A. V., Kurzydłowski K. J.: Microstructure and mechanical properties of nanocrystalline titanium and Ti-Ta-Nb alloy manufactured using various deformation methods. Physica Status Solidi A 202 (2005) 2309÷2320.
  • [43] Garbacz H., Pachla W., Wierzchoń T., Kurzydłowski K. J.: Processing by hydrostatic extrusion of titanium coated with aluminides. Solid State Phenomena 114 (2006) 63÷68.
  • [44] Kurzydłowski K. J.: Hydrostatic extrusion as a method of grain refinement in metallic materials. Materials Science Forum 503-504 (2006) 341÷348.
  • [45] Lewandowska M., Kurzydłowski K. J.: Recent development in grain refinement by hydrostatic extrusion. Journal of Materials Science 43 (2008) 7299÷7306.
  • [46] Pachla W., Kulczyk M., Świderska-Środa A., Lewandowska M., Garbacz H., Mazur A., Kurzydłowski K. J.: Nanostructuring of metals by hydrostatic extrusion. Proceedings of the 9th International ESAFORM Conference on Material Forming, Glasgow, UK, 26÷28 kwietnia (2006) 535÷538.
  • [47] Garbacz H., Pachla W., Kurzydłowski K. J.: Mikrostruktura i właściwości mechaniczne tytanu po wyciskaniu hydrostatycznym. Materiały z konferencji „Tytan i jego stopy”, Warszawa-Serock, 24÷26 października (2005) 73÷81.
  • [48] Topolski K., Garbacz H., Pachla W., Kurzydlowski K. J.: Hydrostatic extrusion of titanium – process parameters. Advances in Materials Science 7 (4) (2007) 114÷120.
  • [49] Topolski K., Garbacz H., Pachla W., Kurzydłowski K. J.: The influence of the initial state on microstructure and mechanical properties of hydrostatically extruded titanium. Solid State Phenomena 140 (2008) 191÷196.
  • [50] Topolski K., Garbacz H., Kurzydlowski K. J.: Nanocrystalline titanium rods processed by hydrostatic extrusion. Materials Science Forum 584- 586 (2008) 777÷782.
  • [51] Salishchev G. A., Galeev R. M., Malysheva S. P., Zherebtsov S. V., Mironov S. Yu., Valiakhmetov O. R., Ivanisenko E. I.: Formation of submicrocrystalline structure in titanium and titanium alloys and their mechanical properties. Metal Science and Heat Treatment 48 (1/2) (2006) 63÷69.
  • [52] Latysh V., Krallics Gy., Alexandrov I., Fodor A.: Application of bulk nanostructured materials in medicine. Current Applied Physics 6 (2006) 262÷266.
  • [53] Vorhauer A., Pippan R.: On the homogeneity of deformation by high pressure torsion. Scripta Materialia 51 (2004) 921÷925.
  • [54] Salishchev G. A., Galeyev R. M., Malysheva S. P., Myshlyaev M. M.: Structure and density of submicrocrystalline titanium produced by severe plastic deformation. Nanostructured Materials 11 (3) (1999) 407÷414.
  • [55] Vinogradov A. Y., Stolyarov V. V., Hashimoto S., Valiev R. Z.: Cyclic behaviour of ultrafine-grain titanium produced by severe plastic deformation. Materials Science and Engineering A 318 (2001) 163÷173.
  • [56] Woo-Jin K., Chang-Young H., Ho-Kyung K.: Fatigue strength of ultrafine- grained pure Ti after severe plastic deformation. Scripta Materialia 54 (2006) 1745÷1750.
Uwagi
PL
Badania realizowano w ramach Projektu nr NN 507 22 64 40, finansowanego przez Narodowe Centrum Nauki.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6bf747f-543a-4e50-96de-3e0ce3e7fb22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.