PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Analysis of the Influence of Technological Parameters on the Grinding Temperature in the Single-Pass Grinding Process of Solid Carbide End Mill Flutes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method of the measurement of temperature and grinding force components during flute grinding of solid carbide end mills was presented. The tests were performed using two diamond grinding wheels: with a resin bond (S1) and with a metal bond (S2). A diamond grinding wheel of 1A1 type and a rectangular cross-section was used. An ultrafine grained carbide with a grain size of 0.2 to 0.5 μm, characterized by high hardness (1730 HV30) and very high tensile strength (4600 MPa) was used. The flutes were grinded in one pass, thus replacing rouging and finish- ing. The temperature of grinding was recorded using thermocouple type K, NiCr-Ni. The measurement of forces was conducted using a rotary piezoelectric dynamometer. Surface topography was recorded with the Alicona InfiniteFocus G4 microscope. The experiment was planned in Design-Expert 13 software. Mathematical models were developed, describing the relationships between the grinding speed and the feed rate as a function of the grinding temperature, grinding force and roughness parameters of the flute. For both grinding wheels, the Fn grinding force was recorded in the range of 28–110 N, the temperature in the range of 32–200 °C and surface roughness Sa in the range of 0.31–0.76 μm. The best grinding result, in terms of low grinding forces and temperatures was achieved for the grinding wheel with the metal bond (S2). For the resin grinding wheel (S1), for the selected technological parameters, grinding burn occurred.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Malkin S., Guo C. Grinding Technology: Theory and Application of Machining with Abrasives. Industrial Press; 2008.
  • 2. Hubert Ch. Schleifen von Hartmetall-und Vollkeramik – Schaftfrasern. Berlin: TU, Diss.; 2011.
  • 3. Fujara M. Methode zur rechnerunterstutzten Auslegung und Optimierung der Geometrie des Vollhartmetall-Spiralbohrers. Darmstadt: Techn. Univ., Diss.; 2011.
  • 4. Christoph H. Schleifen von Hartmetal und VolkeramikSchaftfasern. Berlin: TU, Diss.; 2011.
  • 5. Guachao L., Lie S., Jiafeng L. Modeling and analysis oh helical groove grinding in end mill machining. Journal of Materials Processing Technology. 2014; 214(12): 3067–3076.
  • 6. Burek J., Sałata M., Bazan A. Influence of grinding parameters, on the surface quality in the process of single-pass grinding of flute in solid carbide end mill. Mechanik. 2018; 91(10): 808–810.
  • 7. Burek J., Sałata M., Bazan A. The influence of the type of grinding wheels bond on flute grinding of carbide tools. Mechanik. 2016; 91(8–9): 1130–1131.
  • 8. Yang J., Odén M., Johansson-Jõesaar M.P., Llanes L. Grinding effects on surface integrity and mechanical strength of WC-Co cemented carbides. In: Proc. of 2nd CIRP Conference on Surface Integrity (CSI), Nottingham, UK 2014, 257–263.
  • 9. Uhlmann E., Hübert C. Tool grinding of end mill cutting tools made from high performance ceramics and cemented carbides. CIRP Annals Manufacturing Technology. 2011; 60(1): 359–362.
  • 10. Badger J. Grinding of sub-micron-grade carbide: Contact and wear mechanisms, loading, conditioning, scrubbing and resin-bond degradation. CIRP Annals Manufacturing Technology. 2015; 64(1): 341–344.
  • 11. Bazan A. Kawalec A., Rydzak T., Kubik P. Variation of Grain Height Characteristics of Electroplated cBN Grinding-Wheel Active Surfaces Associated with Their Wear. Metals. 2020; 10(11): 1479.
  • 12. Bazan A., Kawalec A., Rydzak T., Kubik P., Olko A. Determination of Selected Texture Features on a Single-Layer Grinding Wheel Active Surface for Tracking Their Changes as a Result of Wear. Materials. 2021; 14(1): 6.
  • 13. Ren Y.H., Zhang B., Zhou Z.X. Specific energy in grinding of tungsten carbides of various grain sizes. CIRP Annals Manufacturing Technology. 2009; 58(1): 299–302.
  • 14. Shatov A.V., Ponomarev S.S., Firstov S.A. Hardness and Deformation of Hardmetals at Room Temperature. Comprehensive Hard Materials. 2014; 1: 267–299.
  • 15. Sui M., Li C., Wu W., Yang M., Ali H.M., Zhang Y., Cao H. Temperature of grinding carbide with castor oil-based MoS2 nanofluid minimum quantity lubrication. Journal of Thermal Science and Engineering Applications. 2021; 13(5): 051001.
  • 16. Ren X., Huang X., Chai Z., Li L., Chen H., He Y., Chen X. A study of dynamic energy partition in belt grinding based on grinding effects and temperature dependent mechanical properties. Journal of Materials Processing Technology. 2021; 294: 117112.
  • 17. Yang M., Li C., Luo L., Li R., Long Y. Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. International Communications in Heat and Mass Transfer. 2021; 107: 2411–2502.
  • 18. Bazan A., Kawalec A., Babiarz R., Krupa K. Temperature measurement using natural thermocouple during grinding with monolayer grinding wheel. Mechanik. 2017; 90(8–9): 760–762.
  • 19. Grochalski K., Jabłoński P. Comparison contact and thermal imaging methods measure the temperatures of the turning blades during cutting. Mechanik. 2017; 90(3): 214–216.
  • 20. Ren L., Wang S., Yi L., Sun S. An accurate method for five-axis flute grinding in cylindrical end-mills using standard 1V1/1A1 grinding wheels. Precision Engineering. 2016; 43: 387–394.
  • 21. Abdullah A., Pak A., Farahi M., Barzegari M. Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide. Journal of Materials Processing Technology. 2007; 183(2): 165–168.
  • 22. Habrat W.F. Effect of bond type and process parameters on grinding force components in grinding of cemented carbide. Procedia Engineering. 2016; 149: 122–129.
  • 23. Grochalski K., Jabłoński P., Talar R., et al. Temperature Measurement of Modern Cutting Tools During Turning. Advances in Science and Technology Research Journal. 2020; 14(4): 37–48.
  • 24. Burek J., Babiarz R., Sałata M., Krok M. Force measurement during carbide end mill grinding. Mechanik. 2016; 11: 1738–1739.
  • 25. EN ISO 25178-2:2012 Geometrical product specifications (GPS) – Surface texture: Areal-Part2: Terms, definitions and surface texture parameters.
  • 26. National Instruments. Ni USB-621x User manual. June 2021
  • 27. https://www.guenther.com.pl/en/. June 2021
  • 28. Habrat W., Żółkoś M., Świder J., Socha E. Forces modeling in a surface peripheral grinding process with the use of various design of experiment (DoE). Mechanik. 2018; 10: 929–931.
  • 29. Krajnik P., Kopač J. Adequacy of matrix experiment in grinding. Journal of Materials Processing Technology. 2004: 566–572.
  • 30. Montgomery D.C. Design and Analysis of Experiments. Hoboken. NJ: John Wiley & Sons; 2017.
  • 31. Handbook for Experimentersversion 13. Inc. Minneapolis USA; 2021
  • 32. Markopoulos A.P., Habrat W., Galanis N.I., Karkalos N.E. Modelling and Optimization of Machining with the Use of Statistical Methods and Soft Computing. Design of Experiments in Production Engineering. Switzerland: Springer International Publishing; 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6beee68-b15e-4659-b67a-70538863efc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.