PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Study of Metal-Mineral Abrasive Wear Resistance of Hardfacing Layers Produced Through Different Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania porównawcze odporności na zużycie ścierne typu metal–minerał warstw napawanych różnymi metodami
Języki publikacji
EN
Abstrakty
EN
This article presents a comparison of the results of metal-mineral abrasion resistance investigations of hardfacing layers produced through different welding methods: (i) arc, (ii) plasma, and (iii) laser. Flux-cored wire with a metallic core (SK600-G) was used as a feedstock material. The work investigated the influence of basic hardfacing parameters on the geometry, microstructure, and correctness of making single beads . Then, full layers were made with the parameters selected for each method and abrasion resistance tests were carried out in accordance with the ASTM G65 standard. The obtained test results were analyzed for mechanical properties and microstructure of the produced padding welds. On the basis of the tests and analysis of the results, it was found that the use of methods with high energy density has a positive effect on the reduction in the coefficient of the share of the base material in the padding weld, while increasing the hardness. Comparative analysis of the resistance to metal-mineral abrasive wear showed that the resistance was approx. 25% higher for plasma layers and approx. 35% for laser layers, compared to electric arc-deposited layers.
PL
W artykule przedstawiono porównanie odporności na zużycie ścierne typu metal–minerał warstw napawanych różnymi metodami spawalniczymi: (i) łukowo, (ii) plazmowo oraz (iii) laserowo. Jako materiał dodatkowy zastosowano drut proszkowy z rdzeniem metalicznym (SK600-G). W pracy badano wpływ podstawowych parametrów napawania na geometrię, mikrostrukturę oraz poprawność wykonania pojedynczych ściegów. Następnie wykonano pełne warstwy wybranymi parametrami dla każdej z metod i przeprowadzono badania odporności na zużycie ścierne, zgodnie z normą ASTM G65. Uzyskane wyniki badań analizowano w kontekście własności mechanicznych oraz budowy mikrostrukturalnej wytworzonych napoin. Na podstawie analiz wyników badań stwierdzono, że zastosowanie metod o wysokiej gęstości energii korzystnie wpływa na redukcję współczynnika udziału materiału podłoża w napoinie, przy jednoczesnym wzroście twardości. Porównując odporność na zużycie ścierne typu metal–minerał zaobserwowano zmniejszone zużycie o ok. 25% dla napoin plazmowych oraz o ok. 35% dla napoin laserowych w porównaniu do napoin wykonanych metodą łukową.
Czasopismo
Rocznik
Tom
Strony
89--98
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wz.
Twórcy
  • Wrocław University of Science and Technology, Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, 5 Łukasiewicza St., 50371 Wrocław, Poland
  • Wrocław University of Science and Technology, Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, 5 Łukasiewicza St., 50371 Wrocław, Poland
  • Lublin University of Technology, Department of Materials Engineering, Faculty of Mechanical Engineering, 36D Nadbystrzycka St., 20618 Lublin, Poland
autor
  • Wrocław University of Science and Technology, Department of Laser Technology, Automation and Production Engineering, Faculty of Mechanical Engineering, 5 Łukasiewicza St., 50371 Wrocław, Poland
  • Wrocław University of Science and Technology, Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, 5 Łukasiewicza St., 50371 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Department of Laser Technology, Automation and Production Engineering, Faculty of Mechanical Engineering, 5 Łukasiewicza St., 50371 Wrocław, Poland
Bibliografia
  • 1. Balaguru S., Gupta M.: Hardfacing studies of Ni alloys: a critical review, Journal of Materials Research and Technology, vol. 10, p. 12101242, 1, 2021.
  • 2. Fouad Y., Marouani H.: Wear behaviour of hardfacing ultra carbide steel grades, Surface Engineering, vol. 36, no. 11, 2020.
  • 3. KlimpelA.: Industrial surfacing and hardfacing technology, fundamentals and applications, Welding Technology Review, vol. 91, no. 12, 2020.
  • 4. Garbade R.R., Dhokey N.B.: Overview on Hardfacing Processes, Materials and Applications, IOP Conference Series: Materials Science and Engineering, vol. 1017, no. 1, 2021.
  • 5. Szala M., Hejwowski T.: Cavitation erosion resistance of high-alloyed Fe-based weld hardfacings deposited via SMAW method, Tribologia, vol. 4, pp. 85–94, 2022.
  • 6. Ivanov O., Prysyazhnyuk P., Shlapak L., Marynenko S., Bodrova L. Kramar H.: Researching of the structure and properties of FCAW hardfacing based on Fe-Ti-Mo-B-C welded under low current, Procedia Structural Integrity, vol. 36, pp. 223–230, 2022.
  • 7. Cardoso A., Assunção E., Pires I.: Study of a hardfacing flux-cored wire for arc directed energy deposition applications, International Journal of Advanced Manufacturing Technology, vol. 118, no. 910, 2022.
  • 8. Czupryński A.: Comparison of properties of hardfaced layers made by a metal-core-covered tubular electrode with a special chemical composition, Materials, vol. 13, no. 23, 2020.
  • 9. SzymuraM., Czupryński A., Różański M.: Research on the properties of high chromium cast iron overlay welds deposited by tubular electrodes, Welding Technology Review, vol. 90, no. 10, 2018.
  • 10. Pertek-Owsianna A., Wiśniewska-Mleczko K., Panfil D., Bartkowska A.: Testing the structure and properties of steels after hardfacing and laser treatment, Tribologia, vol. 2, p. 97104, 2019.
  • 11. Kalyankar V.D., Naik H.V.: Overview of metallurgical studies on weld deposited surface by plasma transferred arc technique, Metallurgical Research and Technology, vol. 118, no. 1, 2021.
  • 12. Czupryński A., Poloczek T., Urbańczyk M.: Characterization of a new high abrasion and erosion resistance iron-based alloy for PTA hardfacing, International Journal of Modern Manufacturing Technologies, vol. 14, no. 1, 2022.
  • 13. Deng H., Shi H., Tsuruoka S.: Influence of coating thickness and temperature on mechanical properties of steel deposited with Co-based alloy hardfacing coating, Surface and Coatings Technology, vol. 204, no. 23, 2010.
  • 14. Romek D., Selech J., Ulbrich D., Felusiak A., Kieruj P., Janeba-Bartoszewicz E., Pieniak D.: The impact of padding weld shape of agricultural machinery tools on their abrasive wear, Tribologia, vol. 2, pp. 5–62, 2020.
  • 15. Thompson S.M., Bian L., Shamsaei N., Yadollahi A.: An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Additive Manufacturing, vol. 8, 2015.
  • 16. Koruba P., Jurewicz P., Reiner J., Mądry J.: Technologia ultraszybkiego napawania laserowego do nakładania powłok funkcjonalnych Stellite 6 w branży lotniczej, Przegląd Spawalnictwa, vol. 89, no. 6, p. 1519, 2017.
  • 17. Klimpel A., Janicki D., Lisiecki A., Rzeźnikiewicz A.: Laser repair hardfacing of titanium alloy turbine Manufacturing and processing, Journal of Achievements in Materials and Manufacturing Engineering, vol. 49, no. 2, 2011.
  • 18. Sharma S.K., Grewal H.S., Saxena K.K., Mohammed K.A., Prakash C., Davim J.P., Buddhi D., Raju R., Mohan D.G., Tomków J.: Advancements in the Additive Manufacturing of Magnesium and Aluminum Alloys through Laser-Based Approach, Materials, vol. 15, no. 22, 2022.
  • 19. Slobodyan M.: Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review, Nuclear Engineering and Technology, vol. 53, no. 4, p. 10491078, 4 2021.
  • 20. Findik F.: Laser cladding and applications, Sustainable Engineering and Innovation, vol. 5, no. 1, 2023.
  • 21. Wang K., Zhang Z., Xiang D., Ju J.: Research and Progress of Laser Cladding: Process, Materials and Applications, Coatings, vol. 12, no. 10, 2022.
  • 22. Zhu L., Xue P., LanQ ., Meng G., Ren Y., Yang Z., Xu P., Liu Z.: Recent research and development status of laser cladding: A review, Optics & Laser Technology, vol. 138, p. 106915, 6 2021.
  • 23. Adamiak M., Nana Appiah S.A., Żelazny R., Ferreira Batalha G., Czupryński A.: Experimental Comparison of Laser Cladding and Powder Plasma Transferred Arc Welding Methods for Depositing Wear-Resistant NiSiB + 60% WC Composite on a Structural-Steel Substrate, Materials, vol. 16, no. 11, 2023.
  • 24. Singh S., Goyal D.K., Kumar P., Bansal A.: Laser cladding technique for erosive wear applications: A review, Materials Research Express, vol. 7, no. 1, 2020.
  • 25. Bazychowska S., Starosta R., Dudzik K.: Quantitative Assessment of the Influence of Plasma Hardfacing Parameters on the Metallurgical Melting of an Austentic Steel Coating with a Substrate Material Made of C45 Steel, Journal of KONBiN, vol. 52, no. 3, p. 2751, 2022.
  • 26. Shen Q., Xue J., Yu X., Zheng Z., Ou N.: Triple-wire plasma arc cladding of Cr-Fe-Ni-Tix high-entropy alloy coatings, Surface and Coatings Technology, vol. 443, p. 128638, 8 2022.
  • 27. Kripalani K., Jain P.: Experimental investigations of various joinery methods on repaired AISI 304 A plate with Nitinol wire, Materials Today: Proceedings, vol. 37, no. 2, pp. 20932103, 1 2021.
  • 28. Zhao S., Xu S., Huang Y., Yang L.: Laser hot-wire cladding of Ni/WC composite coatings with a tubular cored wire, Journal of Materials Processing Technology, vol. 298, 2021.
  • 29. Zhao S., Xu S., Yang L., Huang Y.: WC-Fe metal-matrix composite coatings fabricated by laser wire cladding, Journal of Materials Processing Technology, vol. 301, 2022.
  • 30. Zhao S., Yang L., Huang Y., Xu S.: A novel method to fabricate Ni/WC composite coatings by laser wire deposition: Processing characteristics, microstructural evolution and mechanical properties under different wire transfer modes, Additive Manufacturing, vol. 38, 2021.
  • 31. Wang L., Jia C., Yuan Y., Huang Y., Yang L.: Microstructure and wear behaviors of (TiB2+TiB+TiC)/Ti coating fabricated by laser wire deposition, Materials Letters, vol. 328, p. 133132, 12 2022.
  • 32. Torims T.: The Application of Laser Cladding to Mechanical Component Repair, Renovation and Regeneration, in DAAAM International Scientific Book, Vienna, Austria, DAAAM International, 2013, p. 587608.
  • 33. Karip E., Aydin S., Muratoʇlu M.: A study on hardfacing alloy using Fe-Cr and Fe-B Powders, ActaPhysica Polonica A, vol. 128, no. 2, 2015.
  • 34. EN 14700:2023 – Welding consumables – Welding consumables for hard-facing, 2023.
  • 35. EN 10025: European Standards for Structural Steel, 2019.
  • 36. ISO 14175: Welding consumables – Gases and gas mixtures for fusion welding and allied processes, International Standards Organization, 2009.
  • 37. ISO 6520-1 – Welding and allied processes – Classification of geometric imperfections in metallic materials – Part 1: Fusion welding, 2007.
  • 38. ISO 9015-2 – Destructive tests on welds in metallic materials – Hardness testing – Part 2: Microhardness testing of welded joints, 2016.
  • 39. ASTM G65 Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus, 2018.
  • 40. Lu Z., Rao Q., JinZ.: An investigation of the corrosion–abrasion wear behavior of 6% chromium martensitic cast steel, Journal of Materials Processing Technology, vol. 95, no. 1–3, pp. 180–184, 10 1999.
  • 41. Li C., Li X., Yu W., Wang M., Wu R.: Effect of cooling rate on martensitic transformation initiation temperature and hardness of super high strength martensitic steel, Jinshu Rechuli/Heat Treatment of Metals, vol. 47, no. 7, 2022.
  • 42. Greco A., Mistry K., Sista V., Eryilmaz O., Erdemir A.: Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications, Wear, vol. 271, no. 9–10, 2011.
  • 43. Kazemipour M., Shokrollahi H., Sharafi S.: The Influence of the Matrix Microstructure on Abrasive Wear Resistance of Heat-Treated Fe-32Cr-4.5C wt% Hardfacing Alloy, Tribology Letters, vol. 39, p. 181, 2010–192.
  • 44. Szala M., Szafran M., Matijošius J., Drozd K.: Abrasive Wear Mechanisms of S235JR, S355J2, C45, AISI 304, and Hardox 500 Steels Tested Using Garnet, Corundum and Carborundum Abrasives, Advances in Science and Technology Research Journal, vol. 17, no. 2, 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6b7a03a-9e63-475a-b93e-9f42cc831f1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.