Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The numerical algorithm of thermal phenomena is based on the solution of the heat conduction equations in Petrov-Galerkin’s formula using the finite element method. In the modeling of phase transformation in the solid state, the models based on the diagrams of continuous heating and continuous cooling (CHT and CCT). In the modeling of mechanical phenomena, equations of equilibrium and constitutive relationships were adopted in the rate form. It was assumed that the hardened material is elastic-plastic, and the plasticizing can be characterized by isotropic, kinematic or mixed strengthening. In the model of mechanical phenomena besides thermal, plastic and structural strains, the transformations plasticity was taken into account. Thermo-physical size occurring in the constitutive relationship, such as Young’s modulus and tangential modulus, while yield point depend on temperature and phase composition of the material. The modified Leblond model was used to determine transformation plasticity. This model was supplemented by an algorithm of modified plane strain state, advantageous in application to the modeling of mechanical phenomena in slender objects. The problem of thermoelasticity and plasticity was solved by the FEM. In order to evaluate the quality and usefulness of the presented numerical models, numerical analysis of temperature fields, phase fractions, stresses and strains was performed, i.e. the basic phenomena accompanying surface layer of progressive-hardening with a movable heat source of slender elements made of tool steel for cold work.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
329--338
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wzory
Twórcy
autor
- Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Institute of Mechanics and Fundamentals of Machine Design, 73 Dąbrowskiego Str., 42-200 Częstochowa, Poland
Bibliografia
- [1] H. Xie, J. Cheng, J. Li, Determination of surface heat-transfer coefficients of steel cylinder with phase transformation during gas quenching with high pressures, Computational Materials Science 29, 453-458 (2004).
- [2] M. Coret, A. Combescure, A mesomodel for the numerical simulation of the multiphase behavior of materials under anisothermal loading (application to two low-carbon steels), International Journal of Mechanical Sciences 44, 1947-1963 (2002).
- [3] L. Taleb, F. Sidoroff, A micromechanical modelling of the Greenwood-Johnson mechanism in transformation induced plasticity, International Journal of Plasticity 19, 1821-1842 (2003).
- [4] B. Chen, X. H. Peng, S. N. Nong, X. C. Liang, An incremental constitutive relationship incorporating phase transformation with the application to stress analysis, Journal of Materials Processing Technology 122, 208-212 (2002).
- [5] F. Fischer, G. Reinsner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, A nev view on transformation induced plasticity (TRIP), International Journal of Plasticity 16, 723-748 (2000).
- [6] L. Huiping, Z. Guoqun, N. Shanting, H. Chuanzhen, FEM simulation of quenching process and experimental verification of simulation results, Material Science and Engineering A 452-453, 705-714 (2007).
- [7] Ch. Heming, H. Xieqing, W. Honggang, Calculation of the residua stress of a 45 steel cylinder with a non-linear surface heat-transfer coefficient including phase transformation during quenching, Journal of Materials Processing Technology 55, 339-343 (1999).
- [8] D. Y. Ju, W. M. Zhang, Y. Zhang, Modeling and experimental verification of martensitic transformation plastic behavior in carbon steel for quenching process, Material Science and Engineering A 438-440, 246-250 (2006).
- [9] S.-H. Kang, Y. T. Im, Three-dimensional thermo-elastic-plastic finite element modeling of quenching process of plain carbon steel in coulee with phase transformation, Journal of Materials Processing Technology 192-193, 381-390 (2007).
- [10] W. Piekarska, M. Kubiak, Z. Saternus, Numerical modelling of thermal and structural strain in laser welding process, Archives of Metallurgy and Materials 57 (4), 1219-1227 (2012).
- [11] M. Avrami, Kinetics of phase change, Journal of Chemical Physics I vol. 7, 1103-1112, II vol. 8, 1940, 212-224, III vol. 9, 1941, 117-184 (1939).
- [12] D. P. Koistinen, R. E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica 7, 59-60 (1959).
- [13] M. Dalgic, G. Löwisch, Transformation plasticity at different phase transformation of bearing steel, Mat.-wiss. u, Werkstofftech 37, 1, 122-127 (2006).
- [14] O. C. Zienkiewicz, R. L. Taylor, The finite element method, Butterworth-Heinemann, Fifth edition 1, 2, (2000).
- [15] T. Domański, A. Bokota, The numerical model prediction of phase components and stresses distributions in hardened tool steel for cold work, International Journal of Mechanical Sciences 96-97, 47-57 (2015).
- [16] J. Orlich, A. Rose, P. Wiest, Atlas zur Wärmebehandlung von Stähle, III Zeit Temperatur Autenitisierung Schaubilder, Verlag Stahleisen MBH, Düsseldorf (1973).
- [17] P. M. Pacheco, M. A. Savi, A. F. Camarao, Analysis of residual stresses generated by progressive induction hardening of steel cylinders, Journal of Strain Analysis 36, 5, 507-516 (2001).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6b12920-898b-4594-a225-2899133546e5