PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Prediction of laminar-to-turbulent transition in a separated boundary layer subjected to an external acoustic forcing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The new Reynolds-averaged Navier–Stokes (RANS)-based method has been developed for taking into account, in an approximate manner, the effect of external acoustic forcing on laminar-to-turbulent transition in a separated boundary layer. Experimental studies [33] report an increase of the turbulent shear stress within the separated boundary layer under the influence of acoustic forcing. Enhancement of flow disturbances in a reversed flow region was also reported in our experiment. Experimental findings stimulated the development of a reduced-order aero-acoustic strategy. The effect of acoustic forcing was incorporated into the modelling framework of an algebraic intermittency model. The model component was tuned based on our experimental data and validated on reference experiments. The results show the feasibility of the proposed model to simulate flow over a flat plate and the NACA0018 profile.
Rocznik
Strony
591--616
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, 00-665, Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, 00-665, Warsaw, Poland
autor
  • Czestochowa University of Technology, Armii Krajowej 21, 42-200, Czestochowa, Poland
autor
  • Czestochowa University of Technology, Armii Krajowej 21, 42-200, Czestochowa, Poland
autor
  • Czestochowa University of Technology, Armii Krajowej 21, 42-200, Czestochowa, Poland
autor
  • Czestochowa University of Technology, Armii Krajowej 21, 42-200, Czestochowa, Poland
Bibliografia
  • 1. J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. Mavriplis, CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences, NASA/CR–2014-218178, 2014.
  • 2. B.R. McAuliffe, M.I. Yaras, Transition mechanisms in separation bubbles under lowand elevated freestream turbulence, Journal of Turbomachinery, 132, 011004/1-10, 2010.
  • 3. W. Balzer, H.F. Fasel, Numerical investigation of the role of free-stream turbulence in boundary-layer separation, Journal of Fluid Mechanics, 801, 289–321, 2016.
  • 4. M. Wang, Z. Li, Ch. Yang, G. Han, S. Zhao, X. Lu, Numerical investigations of the separated transitional flow over compressor blades with different loading distributions, Aerospace Science and Technology, 106, 106113/1-13, 2020.
  • 5. D. Simoni, D. Lengani, M. Ubaldi, P. Zunino, M. Dellacasagrande, Inspection of the dynamic properties of laminar separation bubbles: free-stream turbulence intensity effects for different Reynolds numbers, Experiments in Fluids, 58, 66, 1–14, 2017, doi: 10.1007/s00348-017-2353-7.
  • 6. M.S. Istvan, S. Yarusevych, Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil, Experiments in Fluids, 59, 52, 1–21, 2018.
  • 7. J. Serna, B.J. Lázaro, The final stages of transition and the reattachment region in transitional separation bubbles, Experiments in Fluids, 55, 4, 2014, doi: 10.1007/s00348-014-1695-7.
  • 8. K. Anand, K.T. Ganesh, Characteristics of a separated flow past a semicircular leadingedge airfoil model under different imposed pressure gradient, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1–17, 2021.
  • 9. R.E. Mayle, The role of laminar-turbulent transition in gas turbine engines, Journal of Turbomachinery, 113, 509–537, 1991.
  • 10. M. Dellacasagrande, R. Guida, D. Lengani, D. Simoni, M. Ubaldi, P. Zunino, Correlations for the prediction of intermittency and turbulent spot production rate in separated flows, Journal of Turbomachinery, 141, 031003/1-8, 2019.
  • 11. J.W. Kurelek, M. Kotsonis, S. Yarusevych, Transition in a separation bubble under tonal and broadband acoustic excitation, Journal of Fluid Mechanics, 853, 1–36, 2018.
  • 12. J.W. Kurelek, S. Yarusevych, M. Kotsonis, Vortex merging in a laminar separation bubble under natural and forced conditions, Physical Review Fluids, 4, 063903/1-23, 2019.
  • 13. S. Pröbsting, S. Yarusevych, Laminar separation bubble development on an airfoil emitting tonal noise, Journal of Fluid Mechanics, 780, 167–191, 2015, doi: 10.1017/jfm.2015.427.
  • 14. J. Michna, K. Rogowski, Numerical study of the effect of the Reynolds number and the turbulence intensity on the performance of the NACA 0018 airfoil at the low Reynolds number regime, Processes, 10, 5, 1004, 2022.
  • 15. E. Tangermann, M. Klein, Numerical simulation of laminar separation on a NACA0018 airfoil in freestream turbulence, in: AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics, 2020, doi: 10.2514/6.2020-2064.
  • 16. R.A. Wahidi, S.M. Olçmen, Suction effects on transitional bubbles, Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, 1–14, 2021.
  • 17. S. Kubacki, E. Dick, An algebraic intermittency model for bypass transition in turbomachinery flows, International Journal of Heat and Fluid Flow, 58, 68–83, 2016.
  • 18. S. Kubacki, E. Dick, An algebraic intermittency model for bypass, separation-induced and wake-induced transition, International Journal of Heat and Fluid Flow, 62, 344–361, 2016.
  • 19. K. Nering, K. Rup, An improved algebraic model for by-pass tranistion for calulation of tranistional flow in pipe and parallel-plate channels, Thermal Science, 23, 4, 1123–1131, 2019.
  • 20. K. Nering, K. Rup, Modified algebraic model of laminar-turbulent transition for internal flows, International Journal of Numerical Methods for Heat and Fluid Flow, 30, 4, 1743–1753, 2020.
  • 21. J. Holman, J. Fürst, Coupling the algebraic model of bypass transition with EARSM model of turbulence Advances in Computational Mathematics, 45, 1977–1992, 2019.
  • 22. J. Holman, J. Fürst, Numerical simulation of separation induced laminar to turbulent transition over an airfoil Journal of Computational and Applied Mathematics, 394, 113530/1-15, 2021.
  • 23. P. Louda, J. Prihoda, K. Kozel, Transition modelling on separated flow in turbine cascade in: Proceedings Topical Problems of Fluid Mechanics, D. Šimurda, T. Bodnár [eds.], Prague, pp. 211–220, 2017.
  • 24. D.C. Wilcox, Formulation of the k-! turbulence model revisited, AIAA Journal, 46, 2823–2838, 2008.
  • 25. D.K. Walters, D. Cokljat, A three-equation eddy-viscosity model for Reynoldsaveraged Navier–Stokes simulations of transitional flow, Journal of Fluids Engineering, 130, 121401/1-14, 2008.
  • 26. S. Kubacki, D. Simoni, D. Lengani, M. Dellacasagrande, E. Dick, Extension of an algebraic intermittency model for better prediction of transition in separated layers under strong free-stream turbulence, International Journal of Heat and Fluid Flow, 92, 1–16, 2021, doi: 10.1016/j.ijheatfluidflow.2021.108860.
  • 27. F.R. Menter, P.E. Smirnov, T. Liu, R.A. Avancha, One-equation local correlationbased transition model, Flow Turbulence and Combustion, 95, 583–619, 2015.
  • 28. S. Kubacki, D. Simoni, D. Lengani, M.E. Dick, An Extended version of an algebraic intermittency model for prediction of separation-induced transition at elevated free-stream turbulence level, International Journal of Turbomachinery, Propulsion and Power, 5, 4, 28, 2020.
  • 29. V. Sokolenko, W. Elsner, A. Drózdz, R. Gnatowska, Z. Rarata, S. Kubacki, Experimental analysis of the impact of an acoustic excitation on a separated boundary layer behaviour, Journal of Physics: Conference Series, 2367, 012021, doi: 10.1088/1742-6596/2367/1/012021, 2022.
  • 30. L. Zhou, Z. Gao, Y. Du, Flow-dependent DDES/ 􀀀 R_e_t coupling model for the simulation of separated transitional flow, Aerospace Science and Technology, 87, 389–403, 2019.
  • 31. M. Drela, M.B. Giles, Viscous-in viscid analysis of transonic and low Reynolds number airfoils, AIAA Journal, 25, 10, 1347–1355, 1986.
  • 32. D. Lengani, D. Simoni, M. Ubaldi, P. Zunino, F. Bertini, Experimental study of free-stream turbulence induced transition in an adverse pressure gradient, Experimental Thermal Fluid Science, 84, 18–27, 2017.
  • 33. J.W. Kurelek, B.A. Tuna, S. Yarusevych, M. Kotsonis, Three-dimensional development of coherent structures in a two-dimensional laminar separation bubble, AIAA Journal, 59, 7, 1–13, 2020.
  • 34. C. Gramespacher, H. Albiez, M. Stripf, H.-J. Bauer, The generation of grid turbulence with continuously adjustable intensity and length scales, Experiments in Fluids, 60, 85, 1–15, 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6b0a064-f99e-428f-9e59-5a8d05c076ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.