PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Degradation Behaviour and Kinetics of aged TNT-based Melt Cast Composition B

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, three kinds of aged and freshly prepared 2,4,6-trinitrotoluene (TNT) based Composition B stockpiled, for a period of 20 and 32 years, were investigated for the effect of natural ageing on their thermal degradation behaviour and kinetic parameters. The properties investigated indicated that there was no significant change in the thermal stability of the samples aged under natural environmental conditions. The kinetic parameters were studied by means of the Kissinger method using the peak temperature at maximum reaction rate from DSC data, and the isoconversional Kissinger-Akahira-Sunnose (KAS) and ASTM E689 methods from TGA data. The apparent activation energies calculated by the Kissinger method were 173.8 kJ·mol–1 for fresh, 170.4 kJ·mol–1 for 20 y old and 187.1 kJ·mol–1 for 32 y old Composition B, respectively. The values calculated by the KAS method were found to be in the range 77.2-235.8 kJ·mol–1 for fresh Composition B, 75.7-224.0 kJ·mol–1 for 20 y old and 70.4-196.0 kJ·mol–1 for 30 y old Composition B, respectively. The activation energies obtained from the KAS methods are in good agreement and consistent with the isoconversional ASTM E689 kinetic method. The thermodynamic parameters, such the Gibbs free energy of activation (ΔG#), activation enthalpy (ΔH#) and activation entropy (ΔS#) for the formation of activated complexes were also studied and are discussed.
Rocznik
Strony
360--379
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Terminal Ballistics Research Laboratory, DRDO, Ministry of Defence, Explosive Group, Sector 30, Chandigarh (UT) – 160030, India
  • Terminal Ballistics Research Laboratory, DRDO, Ministry of Defence, Explosive Group, Sector 30, Chandigarh (UT) – 160030, India
  • Applied Sciences, Panjab Engineering College, University of Technology, Chandigarh – 160012, India
  • Applied Sciences, Panjab Engineering College, University of Technology, Chandigarh – 160012, India
  • Terminal Ballistics Research Laboratory, DRDO, Ministry of Defence, Explosive Group, Sector 30, Chandigarh (UT) – 160030, India
Bibliografia
  • [1] Fouche, F.; Van, S. TNT-based Insensitive Munitions. Int. Annu. Conf. ICT, Proc., 27th, Karlsruhe, Germany, 1996.
  • [2] Huang, H.J.; Dong, H.S.; Zhang, M. Problems and Developments in Composition B Modification Research. Chin J. Energ. Mater. 2001, 9: 183-186.
  • [3] Trzciński, W.; Cudziło, S.; Dyjak, S.; Nita, M. A Comparison of the Sensitivity and Performance Characteristics of Melt-Pour Explosives with TNT and DNAN Binder. Cent. Eur. J. Energ. Mater. 2014, 11: 443-455.
  • [4] Vuono, C.E. Military Explosives. Department of the Army Technical Manual, Washington, D.C., USA, 1990.
  • [5] Urbanski, T. Chemistry and Technology of Explosives. Vol. 1, Pergamon Press, Oxford, 1964, pp. 290-300.
  • [6] Akhavan, J. The Chemistry of Explosives. 2nd Ed., Cranfield University Press, Swindon, 2004, pp. 37-39.
  • [7] Castorina, T.C.; McCahill, J.W.; Forsyth, A.C. Compatibility of Flocculating Agents with RDX/TNT/Comp. B. J. Hazard. Mater. 1977-1978, 2: 137-142.
  • [8] Cohen, R.; Zeiri, Y.; Wurzberg, E.; Kosloff, R. Mechanism of Thermal Unimolecular Decomposition of TNT (2,4,6-Trinitrotoluene): a DFT Study. J. Phys. Chem. A. 2007, 111: 11074-11083.
  • [9] Pinto, J.; Wiegand, D. The Mechanical Response of TNT and a Composite, Composition B, of TNT and RDX to Compressive Stress: II Triaxial Stress and Yield. J. Energ. Mater. 1991, 9: 205-263.
  • [10] Zhang, J.G.; Wang, K.; Niu, X.Q.; Zhang, T.L.; Zhou, Z.N. Theoretical Study of the Decomposition Mechanisms and Kinetics of the Ingredients RDX in Composition B. J. Mol. Model. 2012, 18(8): 3915-3926.
  • [11] Colclough, M.E.; Desai, H.; Millar, R.W.; Paul, N.C.; Stewart, M.J.; Golding, P. Energetic Polymers as Binders in Composite Propellants and Explosives. Polym. Adv. Technol. 1994, 5: 554-560.
  • [12] An, C.W.; Li, F.S.; Song, X.L.; Wang, Y.; Guo, X.D. Surface Coating of RDX with a Composite of TNT and an Energetic-polymer and Its Safety Investigation. Propellants Explos. Pyrotech. 2009, 34: 400-405.
  • [13] Jin, B.; She, N.J.; Gou, X.; Peng, R.; Chu, S.; Dong, H. Synthesis, Characterization, Thermal Stability and Sensitivity Properties of New Energetic Polymers - PVTNPg- GAPs Crosslinked Polymers. Polymers 2016, 8: 10-24.
  • [14] Tuukkanen, I.M.; Brown, S.D.; Charsley, E.L.; Goodall, S.J.; Laye, P.G.; Rooney, J.J.; Griffiths, T.T.; Lemmetyinen, H. A Study of the Influence of the Fuel to Oxidant Ratio on the Ageing of Magnesium-Strontium Nitrate Pyrotechnic Compositions using Isothermal Microcalorimetry and Thermal Analysis Techniques. Thermochim. Acta 2005, 426(1-2): 115-121.
  • [15] Long, G.T.; Brems, B.A.; Wight, C.A. Autocatalytic Thermal Decomposition Kinetics of TNT. Thermochim. Acta 2002, 388: 175-81.
  • [16] Yao, M.; Chen, L.; Yu, J.; Peng, J. Thermoanalytical Investigation on Pyrotechnic Mixtures Containing Mg-Al Alloy Powder and Barium Nitrate. Procedia Eng. 2012, 45: 567-573.
  • [17] Long, G.T.; Vyazovkin, S.; Brems, B.A.; Wight, C.A. Competitive Vaporization and Decomposition of Liquid RDX. J. Phys. Chem. B 2000, 104: 2570-2574.
  • [18] Singh, A.; Soni, P.K.; Sarkar, C.; Mukherjee, N. Thermal Reactivity of Aluminized Polymer-Bonded Explosives Based on Non-Isothermal Thermogravimetry and Calorimetry Measurements. J. Therm. Anal. Calorim. 2018, 1-15.
  • [19] Chaturvedi, S.; Dave, P.N. A Review on the Use of Nanometals as Catalysts for the Thermal Decomposition of Ammonium Perchlorate. J. Saudi Chem. Soc. 2013, 17: 135-149.
  • [20] Sorensen, D.N.; Quebral, A.P.; Baroody, E.E.; Sanborn, W.B. Investigation of the Thermal Degradation of the Aged Pyrotechnic Titanium Hydride/Potassium Perchlorate. J. Therm. Anal. Calorim. 2006, 85: 151-156.
  • [21] Kim, Y.; Ambekar, A.; Yoh, J.J. Toward Understanding the Aging Effect of Energetic Materials via Advanced Isoconversional Decomposition Kinetics. J. Therm. Anal. Calorim. 2018, 133: 737-744.
  • [22] Keith, L. The Development of the Arrhenius Equation. J. Chem. Educ. 1984, 61: 494.
  • [23] Kissinger, H. Variation of Peak Temperature with Heating Rate in Differentia Thermal Analysis. J. Res. Natl. Bur. Stand. 1956, 57(4): 217-221.
  • [24] Akahira, T.; Sunose, T. Method of Determining Activation Deterioration Constant of Electrical Insulating Materials. Res. Rep. Chiba Inst. Technol. (Sci. Technol.) 1971, 16: 22-31.
  • [25] Singh, A.; Singh, S.; Sharma, T.C.; Kishore, P. Physicochemical Properties and Kinetic Analysis for Some Fluoropolymers by Differential Scanning Calorimetry. Polym. Bull. 2018, 75: 2315-2338.
  • [26] Brill, T.B.; James, K.J. Thermal Decomposition of Energetic Materials. 62. Reconciliation of the Kinetics and Mechanisms of TNT on the Time Scale from Microseconds to Hours. J. Phys. Chem. 1993, 97: 8759-8763.
  • [27] Singh, A.; Sharma, T.C.; Narang, J.K.; Kishore, P.; Srivastava, A. Thermal Decomposition and Kinetics of Plastic Bonded Explosives Based on Mixture of HMX and TATB with Polymer Matrices. Def. Technol. 2017, 13: 22-32.
  • [28] Singh, A.; Sharma, T.C.; Kishore, P. Thermal Degradation Kinetics and Reaction Models of 1,3,5-Triamino-2,4,6-trinitrobenzene-based Plastic-Bonded Explosives Containing Fluoropolymer Matrices. J. Therm. Anal. Calorim. 2017, 129: 1403-1414.
  • [29] Dubikhin, F.F.; Matveev, V.G.; Nazin, G.M. Thermal Decomposition of 2,4,6-Trinitrotoluene in Melt and Solutions. Russ. Chem. Bull. 1995, 44: 258-263.
  • [30] Makashir, P.S.; Kurian, E.M. Spectroscopic and Thermal Studies on 2,4,6-Trinitrotoluene (TNT). J. Therm. Anal. Calorim. 1999, 55: 173-185.
  • [31] Książczak, A.; Książczak, T. Thermal Decomposition of 2,4,6-Trinitrotoluene During the Induction Period. Thermochim. Acta 1996, 275: 27-36.
  • [32] Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Perez-Maqueda, L.A.; Popescu, C.; N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520: 1-19
  • [33] Furman, D.; Kosloff, R.; Dubnikov, F.; Zybin, S.V.; Goddard, W.A.; Rom, N.; Hirshberg, B.; Zeiri, Y. Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bi-molecular Mechanisms. J. Am. Chem. Soc. 2014, 136: 4192-4200.
  • [34] Rom, N.; Hirshberg, B.; Zeiri, Y.; Furman, D.; Zybin, S.V.; Goddard, W.A.; Kosloff, R. First-Principles-Based Reaction Kinetics for Decomposition of Hot, Dense Liquid TNT from Reax FF Multiscale Reactive Dynamics Simulations. J. Phys. Chem. C 2013, 117: 21043-21054.
  • [35] Guidry, R.M.; Davis, L.P. Thermochemical Decomposition of Explosives. I. TNT Kinetic Parameters Determined from ESR Investigations. Thermochim. Acta 1979, 32: 1-18.
  • [36] Janney, J.L.; Rogers, R.N. Thermochemistry of Mixed Explosives. Int. Conf. Thermal Analysis, Proc., 7th, Part 2, Chichester, 1982, 1426.
  • [37] Maksimov, Y.Y.; Polyakova, M.V.; Sapranovich, V.F. Thermal Decomposition of Hexogen and Octogen. Tr. Mosk. Khim.-Tekhnol. Inst. im. Mendeleeva 1967, 53: 73-84.
  • [38] Turmanova, S.C.; Genieva, S.D.; Dimitrova, A.S.; Vlaev, L.T. Non-Isothermal Degradation Kinetics of Filled with Rice Husk Ash Polypropene Composites. Express Polym. Lett. 2008, 2: 133-146.
  • [39] Singh, A.; Kaur, G.; Sarkar, C.; Mukherjee, N. Investigations on Chemical, Thermal Decomposition Behavior, Kinetics, Reaction Mechanism and Thermodynamic Properties of Aged TATB. Cent. Eur. J. Energ. Mater. 2018, 15(2): 258-282.
  • [40] Vlaev, L.; Nedelchev, N.; Gyurova, K.; Zagorcheva, M.A. Comparative Study of Non-Isothermal Kinetics of Decomposition of Calcium Oxalate Monohydrate. J. Anal. Appl. Pyro. 2008, 81: 253-262.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6afdc1b-d4f1-4590-b36a-30c8f68450fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.