PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Subsurface deformation and burr formation in nickel-based single-crystal superalloy under grinding

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Machined subsurface and burr of nickel-based single-crystal superalloys (SXs) were identified as a key factor to the aero-engine industrial requirements concerning high service performance and the precision of edge geometry, in particular the finishing operations as grinding. To clarify subsurface deformation behaviors and the mechanisms of burr formation when grinding SXs, first, the present investigation predicted slip stresses acting on slip systems in workpiece subsurface under grinding based on the theory of resolved shear stress in single crystal, and correlated theoretical possible slip traces with experimental observed slip band systems. Second, grinding experiments on nickel-based SXs with [00-1]/[010], [11-3]/[332], [-110]/[111] and [-1-1-1]/[-110] orientations were performed to determine the anisotropy deformational behaviors of workpiece subsurface. Lastly, the unreported free surface of burr was adopted to investigate the formation mechanisms for side burrs and exit burrs during grinding. Results show that subsurface deformation patterns present anisotropy and resolved shear stress contribute to slip in nickel-based SXs. High shear density layers/zones consisting of interacted slip bands are found in grinding-induced sub-surfaces. Slip induced plasticity is the dominant deformation mechanism in the formation process of side burrs and exit burrs in grinding of nickel-based SXs.
Rocznik
Strony
art. no. e126, 2023
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
  • School of Mechanical Engineering and Automation, Northeastern University, 110819 Shenyang, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, 110819 Shenyang, China
autor
  • School of Mechanical Engineering, Jiangsu University, 212013 Zhenjiang, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, 110819 Shenyang, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, 110819 Shenyang, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, 110819 Shenyang, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, 110819 Shenyang, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, 110819 Shenyang, China
Bibliografia
  • 1. Reed RC, Tao T, Warnken N. Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater. 2009;57:5898-913.
  • 2. Axinte DA, Andrews P. Some considerations on tool wear and workpiece surface quality of holes finished by reaming or milling in a nickel base superalloy. Proc Inst Mech Eng B J Eng Manuf. 2007;221:591-603.
  • 3. Curtis DT, Soo SL, Aspinwall DK, Mantle AL. Evaluation of workpiece surface integrity following point grinding of advanced titanium and nickel based alloys. Proc CIRP. 2016;45:47-50.
  • 4. Novovic D, Dewes RC, Aspinwall DK, Voice W, Bowen P. The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf. 2004;44:125-34.
  • 5. Koneva NA, Kozlov EV, Trishkina LI. Internal field sources, their screening and the flow stress. Mater Sci Eng A. 2001;319-321:156-9.
  • 6. Lawson BL, Kota N, Ozdoganlar OB. Effects of Crystallographic anistropy on orthogonal micromachining of single-crystal aluminum. J Manuf Sci Eng. 2008;130: 031116.
  • 7. Klocke F, Soo SL, Karpuschewski B, Webster JA, Novovic D, Elfizy A, Axinte DA, Tonissen S. Abrasive machining of advanced aerospace alloys and composites. CIRP Ann. 2015;64:581-604.
  • 8. Miao Q, Ding W, Xu J, Cao L, Wang H, Yin Z, Dai C, Kuang W. Creep feed grinding induced gradient microstructures in the superficial layer of turbine blade root of single crystal nickel-based superalloy. Int J Extreme Manuf. 2021;3: 045102.
  • 9. Miao Q, Ding W, Kuang W, Yang C. Grinding force and surface quality in creep feed profile grinding of turbine blade root of nickel-based superalloy with microcrystalline alumina abrasive wheels. Chin J Aeronaut. 2021;34:576-85.
  • 10. Xu Y, Gong Y, Wang Z, Wen X, Yin G, Zhang H, Qi Y. Experimental study of Ni-based single-crystal superalloy: Microstructure evolution and work hardening of ground subsurface. Arch Civ Mech Eng. 2021;21:1-11.
  • 11. Sarıkaya M, Gupta MK, Tomaz I, Pimenov DY, Kuntoğlu M, Khanna N, Yıldırım CV, Krolczyk GM. A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys. CIRP J Manuf Sci Technol. 2021;35:624-58.
  • 12. Bayraktar Ş, Afyon F. Machinability properties of Al-7Si, Al-7Si-4Zn and Al-7Si-4Zn-3Cu alloys. J Braz Soc Mech Sci Eng. 2020;42:1-12.
  • 13. Bayraktar Ş, Hekimoğlu AP. Effect of zinc content and cutting tool coating on the machinability of the Al-(5-35) Zn alloys. Met Mater Int. 2020;26:477-90.
  • 14. Osterle WL, Li PX. Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates. Mater Sci Eng A. 1997;238:357-66.
  • 15. Yao Y, Xiu S, Sun C, Hong Y, Hou Z, Zou X. Surface modification of 40Cr steel subjected to composite strengthening grinding process. Mater Charact. 2023;196:112590.
  • 16. Li M, Yin J, Che L, Ding W, Xu J. Influence of alumina abrasive tool wear on ground surface characteristics and corrosion properties of K444 nickel-based superalloy. Chin J Aeronaut. 2022;35:339-51.
  • 17. Wang J, Xu J, Wang X, Zhang X, Song X, Chen X. A comprehensive study on surface integrity of nickel-based superalloy Inconel 718 under robotic belt grinding. Mater Manuf Process. 2018;34:61-9.
  • 18. Xu D, Liao Z, Axinte D, Hardy M. A novel method to continuously map the surface integrity and cutting mechanism transition in various cutting conditions. Int J Mach Tools Manuf. 2020;151:103529.
  • 19. Sudermann H, Reichenbach I, Aurich J. Analytical modeling and experimental investigation of burr formation in grinding. In: Burrs-analysis, control and removal. Springer; 2010. p. 63-71.
  • 20. Aurich JC, Dornfeld D, Arrazola PJ, Franke V, Leitz L, Min S. Burrs - analysis, control and removal. CIRP Ann. 2009;58:519-42.
  • 21. Kawamura S, Yamakawa J. Formation and growing up process of grinding burrs. Bull Jpn Soc Precis Eng. 1989;23:194-9.
  • 22. Aurich J, Sudermann H, Bil H. Characterisation of burr formation in grinding and prospects for modelling. CIRP Ann. 2005;54:313-6.
  • 23. Chen Z, Wu X, Zeng K, Shen J, Jiang F, Liu Z, Luo W. Investigation on the exit burr formation in micro milling. Micromachines (Basel). 2021;12:952.
  • 24. Kumar AS, Deb S, Paul S. Ultrasonic-assisted abrasive micro-deburring of micromachined metallic alloys. J Manuf Process. 2021;66:595-607.
  • 25. Geier N, Poor DI, Pereszlai C, Tamas-Benyei P. Drilling of recycled carbon fibre-reinforced polymer (rCFRP) composites: analysis of burrs and microstructure. Int J Adv Manuf Technol. 2022;120:1677-93.
  • 26. Wu F, Liu Z, Guo B, Sun Y, Chen J. Research on the burr-free interrupted cutting model of metals. J Mater Process Technol. 2021;295:117190.
  • 27. Denkena LdLB, Wang B. Burr formation and removal at profile grinding of riblet structures. In: International conference on burrs, 2-3 April 2009, Kaiserslautern, Germany; 2009. p. 147-154.
  • 28. Barth C, Dollmeier R, Warnecke G. Burr formation in grinding of hardened steel with conventional and superabrasive wheels. Trans N Am Manuf Res Inst SME. 2001;29:273-8.
  • 29. Liu L, Meng J, Liu J, Jin T, Sun X, Zhang H. Effects of crystal orientations on the cyclic deformation behavior in the low cycle fatigue of a single crystal nickel-base superalloy. Mater Des. 2017;131:441-9.
  • 30. Li J, Jing J, He J, Chen H, Guo H. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures. Mater Des. 2020;193: 108776.
  • 31. Yin G, Guan Y, Wang J, Zhou Y, Chen Y. Multi-information fusion recognition model and experimental study of grinding wheel wear status. Int J Adv Manuf Technol. 2022;121:3477-98.
  • 32. Yin G, Wang J, Guan Y, Wang D, Sun Y. The prediction model and experimental research of grinding surface roughness based on AE signal. Int J Adv Manuf Technol. 2022;120:6693-705.
  • 33. Qu S, Yao P, Gong Y, Chu D, Yang Y, Li C, Wang Z, Zhang X, Hou Y. Environmentally friendly grinding of C/SiCs using carbon nanofluid minimum quantity lubrication technology. J Clean Prod. 2022;366:132898.
  • 34. Qu S, Yao P, Gong Y, Yang Y, Chu D, Zhu Q. Modelling and grinding characteristics of unidirectional C-SiCs. Ceram Int. 2022;48:8314-24.
  • 35. Kota N, Ozdoganlar OB. Orthogonal machining of single-crystal and coarse-grained aluminum. J Manuf Process. 2012;14:126-34.
  • 36. Ichida Y, Sato R, Fujimoto M, Fredj NB. Fractal analysis of self-sharpening phenomenon in cBN grinding. Key Eng Mater. 2008;389-390:42-7.
  • 37. Stoller RE, Zinkle SJ. On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials. J Nucl Mater. 2000;283:349-52.
  • 38. Backofen WA. Deformation processing. Met Trans. 1973;4:2679-99.
  • 39. Xu Y, Gong Y, Zhang W, Wen X, Xin B, Zhang H. Effect of grinding conditions on the friction and wear performance of Ni-based single crystal superalloy. Arch Civ Mech Eng. 2022;102:22.
  • 40. Xu Y, Gong Y, Zhang W, Wen X, Yin G, Li J, Zhao J. Microstructure evolution and dynamic recrystallization mechanism induced by grinding of Ni-based single crystal superalloy. J Mater Process Technol. 2022;310:117784.
  • 41. Schilke M, Ahlstrom J, Karlsson B. Low cycle fatigue and deformation behaviour of austenitic manganese steel in rolled and in as-cast conditions. Proc Eng. 2010;2:623-8.
  • 42. Alfyorova EA, Lychagin DV, Filippov AV. Octahedral slip in nickel single crystals induced by scratch testing. Lett Mater. 2018;8:415-8.
  • 43. Kramer DE, Savage MF, Levine LE. AFM observations of slip band development in Al single crystals. Acta Mater. 2005;53:4655-64.
  • 44. Vavra F, Ševčik Z. Formation of wavy slip bands in AgCl crystals at low temperatures. Czech J Phys B. 1986;36:509-13.
  • 45. Sun Y, Jin L, Gong Y, Wen X, Yin G, Wen Q, Tang B. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. J Manuf Process. 2022;73:799-814.
  • 46. Li C, Piao Y, Meng B, Zhang Y, Li L, Zhang F. Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (0001) plane. Appl Surf Sci. 2022;578:152028.
  • 47. Tawakoli T, Hadad MJ, Sadeghi MH, Daneshi A, Stockert S, Rasifard A. An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication - MQL grinding. Int J Mach Tools Manuf. 2009;49:924-32.
  • 48. Esmaeili H, Adibi H, Rezaei SM. Study on surface integrity and material removal mechanism in eco-friendly grinding of Inconel 718 using numerical and experimental investigations. Int J Adv Manuf Technol. 2021;112:1797-818.
  • 49. Cao Y, Zhu Y, Ding W, Qiu Y, Wang L, Xu J. Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy. Chin J Aeronaut. 2022;35:332-45.
  • 50. Kuntoglu M. Machining induced tribological investigations in sustainable milling of Hardox 500 steel: a new approach of measurement science. Measurement. 2022;201:111715.
  • 51. Dai CW, Ding WF, Zhu YJ, Xu J-H, Yu HW. Grinding temperature and power consumption in high speed grinding of Inconel 718 nickel-based superalloy with a vitrified CBN wheel. Prec Eng. 2018;52:192-200.
  • 52. Liu S, Xiao G, Lin O, He Y, Song S. A new one-step approach for the fabrication of microgrooves on Inconel 718 surface with microporous structure and nanoparticles having ultrahigh adhesion and anisotropic wettability: Laser belt processing. Appl Surf Sci. 2023;607:155108.
  • 53. Hood R, Cooper P, Aspinwall DK, Soo SL, Lee DS. Creep feed grinding of γ-TiAl using single layer electroplated diamond superabrasive wheels. CIRP J Manuf Sci Technol. 2015;11:36-44.
  • 54. Kacalak W, Lipiński D, Bałasz B, Rypina Ł, Tandecka K, Szafraniec F. Performance evaluation of the grinding wheel with aggregates of grains in grinding of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol. 2017;94:301-14.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6ae2636-b760-4b7c-aa3c-dffc458fb5db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.