PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Proposal of Conversion the Tugboat Engines to Diesel – LNG Operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
International shipping is the source of around 3% of global CO2 emissions. Liquefied natural gas (LNG) is currently considered the only reasonable and commercially advanced alternative to the petroleum-based ship fuels. Liquefied natural gas can make a significant contribution to the diversification of transport fuels, reducing the greenhouse gas emissions from ships and heavy vehicles. The introduction of LNG technology as a drive for inland ships is a complex process. It requires activities in various areas, including development, legislation, building infrastructure, construction of new ships or their reconstruction. The greatest problem now seems to be the certainty of investing in the new fleet or their reconstruction. It is therefore desirable to assure shipowners that the investment in renewing or reconstruction should be guaranteed. This paper provides a study of reconstruction of the inland tugboat (tug) to a dual fuel system (diesel – LNG). A tugboat used by Slovak shipping company was chosen as a model vessel. The results presented a comprehensive design of the main and auxiliary engine remodelling, as well as the design of the vessel’s tanks and show how the conversion affects the basic navigational characteristics of the tugboat. Finally, the results point to the conversion methodology which is partly applicable to another type of inland tug, considering the individual specificities.
Twórcy
  • Faculty of Operation and Economics of Transport and Communication, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia
autor
  • Faculty of Operation and Economics of Transport and Communication, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia
  • ENGUL, s.r.o., Robotnicka 14/9856, 036 01 Martin, Slovakia
  • Danube LNG, EEIG, Pristavna 10, 821 01 Bratislava, Slovakia
  • Stanislaw Staszic University of Applied Sciences in Pila, Polytechnic Institute, ul. Podchorążych 10, 64-920 Piła, Poland
  • Department of Transport and Logistics, Faculty of Technology, Institute of Technology and Business in Ceske Budejovice, Czech Republic
Bibliografia
  • 1. Jurkovic, M., Kalina, T., Sosedova, J., Tvrda, E. Globalisation of the LNG trade in Caspian region. In: Globalization and its socio-economic consequences. 16th international scientific conference: proceedings, PTS I-V. Rajecke Teplice, Slovakia. 05–06, 2016, 793–799.
  • 2. Ota, J. Kryogenika. CVUT, Prague, 1986.
  • 3. Thiruvengadam, A., Besch, M., Padmanaban, V., Pradhan, S., Demirgok, B. Natural gas vehicles in heavy-duty transportation-A review. Energy Policy. Volume 122, 2018, 253–259. https://doi. org/10.1016/j.enpol.2018.07.052.
  • 4. Kramer, U., Ferrera, M., Henning, K., David, M., Magnusson, I. Natural Gas/Methane Fuels: European Automotive Fuel Quality and Standardization Requirements, 2015.
  • 5. Kalina, T., Jurkovic, M., Grobarcikova, A. LNG – Great opportunity for the inland water transport. In: Transport means 2015: proceedings of the 19th international scientific conference: October 22–23, 2015, Kaunas University of Technology, 2015, 489–492.
  • 6. European Environmental Agency. Greenhouse Gas Emissions from Transport. European Environment Agency. Copenhagen (DK), 2015.
  • 7. International Maritime Organization. Third IMO Greenhouse Gas Study. IMO. London, 2015.
  • 8. Iannaccone, T., Landucci, G., Scarponi, G.E., Bonvicini, S., Cozzani, V. Inherent safety assessment of alternative technologies for LNG ships bunkering, Ocean Engineering, 185, 2019, 100–114. https://doi.org/10.1016/j.oceaneng.2019.05.028.
  • 9. Skrucany T., Kendra M., Stopka O., Milojevic S., Figlus T., Csiszar C. Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries, Sustainability, 11(18), 2019, Article no. 4948. DOI: 10.3390/su11184948.
  • 10. Sarkan, B., Stopka, O., Gnap, J., Caban, J. Investigation of Exhaust Emissions of Vehicles with the Spark Ignition Engine within Emission Control. Transbaltica 2017: Transportation Science and Technology, Book Series: Procedia Engineering, 187, 2017, 775–782, DOI: 10.1016/j.proeng.2017.04.437.
  • 11. MARPOL. International Convention for the Prevention of Pollution from Ship. Available at: http:// www.marpoltraining.com/MMSKOREAN/MARPOL/intro/index.html, 2006.
  • 12. Skrucany, T, Gnap, J. Energy intensity and greenhouse gases production of the road and rail Cargo transport using a software in simulate the energy consumption of a train. In: Telematics – support of transport: 14th international conference on Transport systems telematics, TST 2014: Katowice/ Kraków/Ustroń, Poland, October 22–25, 2014: selected papers. – Berlin: Springer-Verlag, 2014.
  • 13. Galierikova, A., Sosedova, J. Environmental aspects of transport in the context of development of inland navigation. In: Ekológia (Bratislava), 35( 3), 2016, 279–288.
  • 14. David, A., Piala, P., Stupalo, V. ICTTE 2016. International conference on Traffic and transport engineering: November 24–25, 2016, Belgrade, Serbia. – Belgrade: City Net Scientific Research Center, 2016.
  • 15. Skrucany, T., Kendra, M., Jurkovic, M., Kalina, T. Environmental Comparision of Different Transport Modes. In: Nase more = Our sea: znanstveno-strucni casopis za more i pomorstvo, 65(4), 2018, 192–196. DOI: 10.17818/NM/2018/4SI.5.
  • 16. General rules for reconstruction of vessels. Decision of the Maritime Safety Committee (MSC), 285(86).
  • 17. Kalina, T., Jurkovic, M., Jancosek, L., Kadnar, R. Proposal for the conversion of vessels to the LNG fuel system. In: CMDTUR2018, 8th international scientific conference. Zilina, Slovakia, 2018.
  • 18. LNG Masterplan for Rhine-Main-Danube /TEN-T Network Programme/. Technical study for engine replacement and converting the existing power drive units of tug boats to dual diesel/liquefied natural gas fuel system.
  • 19. Kalina, T., Jurkovic, M., Sapieta, M., Binova, H., Sapietova, A. Strength Characteristics of LNG Tanks and their Application in Inland Navigation. In. AD ALTA-Journal of Interdisciplinary Research, 7(2), 2017, 274–281.
  • 20. European Standard EN 13 645 – Installations and equipment for Liquefied Natural Gas – Design of on-shore installations with a storage capacity between 5t and 200t.
  • 21. EN 13 458 – Cryogenic vessels – Static vacuum insulated vessels.
  • 22. EC 94/9/EC – Equipment and Protective systems intended for use in potentially explosive atmospheres (ATEX).
  • 23. EN 60079–10 – Electrical apparatus for explosive gas atmospheres – Classification of hazardous areas.
  • 24. PED 97/23/EC – Pressure Equipment Directive.
  • 25. EN 60079–10 – Electrical apparatus for explosive gas atmospheres – Classification of hazardous areas.
  • 26. EN 1160 – Installation and equipment for Liquefied Natural Gas – General characteristics of liquefied natural gas.
  • 27. EN 13480 – Metal piping systems.
  • 28. Jurkovic, M., Kalina, T., Turcan, R., Gardlo, B. Proposal of an enhanced safety system on board of the inland vessel. In: MATEC web of conferences. LOGI 2017 – 18th international scientific conference: České Budějovice, Czech Republic, October 19, Vol. 134, art. no. 00022. 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6ac7012-cdc0-4a86-a64d-894387a0b223
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.