PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka procesu aktywacji cząsteczki tlenu molekularnego na solwatowanych wybranych metalach przejściowych (3d) — obliczenia DFT

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Characteristics of the oxygen molecule activation process on 3d selected transition metals — DFT calculations
Języki publikacji
PL
Abstrakty
PL
Przedmiotem pracy jest charakterystyka procesu aktywacji cząsteczki tlenu molekularnego na solwatowanych wybranych metalach przejściowych (3d). W niniejszej pracy, korzystając metody DFT (ang. density functional theory), wykonano obliczenia kwantowo-mechaniczne, których celem było scharakteryzowanie struktury elektronowej sześciokoordynacyjnych kompleksów wodnych i acetonitrylowych o wzorach ogólnych [TM(H₂O)₆]n+ i [TM(CH₃CN)₆]n+, gdzie: n = 2, 3 oraz kompleksów z zaadsorbowaną na centrum metalicznym cząsteczką tlenu molekularnego: ([TM(H₂O)₅–O₂]n+ i [TM(CH₃CN)₅–O₂]n+), gdzie n = 2, 3. Do obliczeń wybrano jony metali przejściowych TM (ang. transition metal) z okresu czwartego: Co2+, Fe2+, Mn2+, Ni2+, Zn2+, Cu2+ oraz Cr3+. Na podstawie przeprowadzonych obliczeń stwierdzono, że każdy z analizowanych w pracy parametrów jest funkcją wprowadzonego metalu przejściowego. Co więcej efekt użytego metalu przejściowego na analizowane parametry (np. energetyka orbitali granicznych, rozmiar przerwy energetycznej, ładunki, itd.) przewyższa efekt użytego rozpuszczalnika (H₂O/CH₃CN).
EN
The subject of this research is the characterization of the activation process of the oxygen molecule on solvated selected transition metals (3d). In this study , using the Density Functional Theory, quantum-mechanical calculations were made, the purpose of which was to characterize the electronic structure of water and acetonitrile six-coordinated complexes with general formulas [TM(H₂O)₆]n+ and [TM(CH₃CN)₆]n+, where: n = 2, 3, and complexes with adsorbed at the metal center with an oxygen molecule ([TM(H₂O)₅–O₂]n+ i [TM(CH₃CN)₅–O₂]n+), where: n = 2, 3. The calculations were made using transition metal ions from the fourth period of periodic table: TM = Co2+, Fe2+, Mn2+, Ni2+, Zn2+, Cu2+ and Cr3+. Based on the calculations performed, it was found that each of the parameters analyzed in this work is a function of the introduced transition metal. Moreover, the effect of the transition metal used on the analyzed parameters (e.g. energetics of boundary orbitals, size of the energy gap, charges, etc.) exceeds the effect of the solvent used (H₂O/CH₃CN).
Rocznik
Strony
30--40
Opis fizyczny
Bibliogr. 41 poz., tab.
Twórcy
  • Akademia Tarnowska, Wydział Politechniczny, ul. Mickiewicza 8, 33-100 Tarnów, Polska
  • Akademia Tarnowska, Wydział Matematyczno-Przyrodniczy, ul. Mickiewicza 8, 33-100 Tarnów, Polska
Bibliografia
  • [1] Radoń M, Drabik G. Spin states and other ligand-field states of aqua complexes revisited with multireference Ab initio calculations including solvation effects. Journal of Chemical Theory and Computation. 2018;14(8):4010– 4027. https://doi.org/10.1021/acs.jctc.8b00200.
  • [2] Yepes D, Seidel R, Winter B, Blumberger J, Jaque P. Photoemission spectra and density functional theory calculations of 3d transition metal-aqua complexes (Ti-Cu) in aqueous solution. The Journal of Physical Chemistry B. 2014;118(24):6850–6863. https://doi.org/10.1021/jp5012389.
  • [3] Yang Y, Ratner MA, Schatz GC. Multireference Ab initio study of ligand field D-d transitions in octahedral transition-metal oxide clusters. The Journal of Physical Chemistry C. 2014;118(50):29196–29208. https://doi.org/10.1021/jp5052672.
  • [4] Rotzinger FP. Performance of molecular orbital methods and density functional theory in the computation of geometries and energies of metal aqua ions. The Journal of Physical Chemistry B. 2005;109(4):1510–1527. https://doi.org/10.1021/jp045407v.
  • [5] Rotzinger FP. Structure of the transition states and intermediates formed in the water-exchange of metal hexaaqua ions of the first transition series. Journal of the American Chemical Society. 1996;118(28):6760–6766. https://doi.org/10.1021/ja960184a.
  • [6] Ludwig T, Singh AR, Nørskov JK. Acetonitrile transition metal interfaces from first principles. The Journal of Physical Chemistry Letters. 2020;11(22):9802–9811. https://doi.org/10.1021/acs.jpclett.0c02692.
  • [7] Kang Y, Murray CB. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). Journal of the American Chemical Society. 2010;132(22):7568– 7569. https://doi.org/10.1021/ja100705j.
  • [8] Yang H, Zhang J, Sun K, Zou S, Fang J. Enhancing by weakening: Electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew. Chemie - Int. Ed. 2010;49(38):6848–6851. https://doi.org/10.1002/anie.201002888.
  • [9] Xu D, Liu Z, Yang H, Liu Q, Zhang J, Fang J, Zou S, Sun K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angewandte Chemie [International Edition]. 2009;48(23):4217– 4221. https://doi.org/10.1002/anie.200900293.
  • [10] Kang Y, Pyo JB, Ye X, Gordon TR, Murray CB. Synthesis, Shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt 3Zn intermetallic nanocrystals. ACS Nano. 2012;6(6):5642–5647. https://doi.org/10.1021/nn301583g.
  • [11] Baek J, Yun HJ, Yun D, Choi Y, Yi J. Preparation of highly dispersed chromium oxide catalysts supported on mesoporous silica for the oxidative dehydrogenation of propane using CO₂: Insight into the nature of catalytically active chromium sites. ACS Catalysis. 2012;2(9):1893–1903. https://doi.org/10.1021/cs300198u.
  • [12] Li J, Shi Y, Xu L, Lu G. Selective oxidation of cyclohexane over transition-metal-incorporated hms in a solvent-free system. Industrial & Engineering Chemistry Research. 2010;490(11):5392–5399. https://doi.org/10.1021/ie100092x.
  • [13] Rajabi F, Pineda A, Naserian S, Balu AM, Luque R, Romero AA. Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates. Green Chemistry. 2013;15(5):1232–1237. https:// doi.org/10.1039/c3gc40110c.
  • [14] Pathan S, Patel A. Transition-metal-substituted phosphomolybdates: Catalytic and kinetic study for liquid- phase oxidation of styrene. Industrial & Engineering Chemistry Research. 2013;52(34):11913–11919. https://doi.org/10.1021/ie400797u.
  • [15] Banerjee D, Jagadeesh RV, Junge K, Pohl MM, Radnik J, Brückner A, Beller M. Convenient and mild epoxidation of alkenes using heterogeneous cobalt oxide catalysts. Angewandte Chemie [International Edition]. 2014;53(17):4359– 4363. https://doi.org/10.1002/anie.201310420.
  • [16] Ashouri F, Zare M, Bagherzade M. Manganese and cobalt- terephthalate metal-organic frameworks as a precursor for synthesis of Mn2O3, Mn₃O₄ and Co₃O₄ nanoparticles: Active catalysts for olefin heterogeneous oxidation. Inorganic Chemistry Communications. 2015;61:73–76. https://doi.org/10.1016/j.inoche.2015.08.019.
  • [17] Qiu G, Dharmarathna S, Zhang Y, Opembe N, Huang H, Suib SL. Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. The Journal of Physical Chemistry C. C 2012;116(1):468–477. https://doi.org/10.1021/jp209911k.
  • [18] Najafpour MM, Rahimi F, Amini M, Nayeri S, Bagherzadeh M. A very simple method to synthesize nano-sized manganese oxide: An efficient catalyst for water oxidation and epoxidation of olefins. Dalton Transactions. 2012;41(36):11026– 11031. https://doi.org/10.1039/c2dt30553d.
  • [19] Najafpour MM, Amini M, Sedigh DJ, Rahimi F, Bagherzadeh M. Activated layered manganese oxides with deposited nano-sized gold or silver as an efficient catalyst for epoxidation of olefins. RSC Advances. 2013;3(46):24069– 24074. https://doi.org/10.1039/c3ra45004j.
  • [20] Song S, Wu Y, Ge S, Wang L, Wang Y, Guo Y, Zhan W, Guo Y. A Facile way to improve Pt atom efficiency for CO oxidation at low temperature: modification by transition metal oxides. ACS Catalysis. 2019;9(7):6177–6187. https://doi.org/10.1021/acscatal.9b01679.
  • [21] Zhao S, Kang D, Liu Y, Wen Y, Xie X, Yi H, Tang X. Spontaneous formation of asymmetric oxygen vacancies in transition-metal-doped CeO₂ nanorods with improved activity for carbonyl sulfide hydrolysis. ACS Catalysis. 2020;10(20):11739–11750. https://doi.org/10.1021/acscatal.0c02832.
  • [22] Zhang R, Ran T, Cao Y, Zhang Q, Dong F, Yang G, Zhou Y. Surface hydrogen atoms promote oxygen activation for solar light-driven NO oxidization over monolithic Α‑Ni(OH)2/Ni foam. Environmental Science & Technology. 2020;54(24):16221–16230. https://doi.org/10.1021/acs.est.0c05635.
  • [23] Chen Y, Huang Z, Zhou M, Ma Z, Chen J, Tang X. Single silver adatoms on nanostructured manganese oxide surfaces: Boosting oxygen activation for benzene abatement. Environmental Science & Technology. 2017;51(4):2304– 2311. https://doi.org/10.1021/acs.est.6b04340.
  • [24] Eisenberg D, Slot TK, Rothenberg G. Understanding oxygen activation on metal- and nitrogen-codoped carbon catalysts. ACS Catalysis. 2018;8(9):8618–8629. https://doi.org/10.1021/acscatal.8b01045.
  • [25] Cramer LA, Liu Y, Deshlahra P, Sykes ECH. Dynamic restructuring induced oxygen activation on AgCu near-surface alloys. The Journal of Physical Chemistry Letters. 2020;11(15):5844–5848. https://doi.org/10.1021/acs.jpclett.0c00887.
  • [26] Liu W, Wang Y, Ai Z, Zhang L. Hydrothermal synthesis of FeS2 as a high-efficiency fenton reagent to degrade alachlor via superoxide-mediated Fe(II)/Fe(III) cycle. ACS Applied Materials & Interfaces. 2015;7(51):28534–28544. https://doi.org/10.1021/acsami.5b09919.
  • [27] Turbomole: Program package for electronic structure calculation. Version 7.1. Karlsruhe: Turbomole GmbH. http://www.turbomole.com.
  • [28] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77(18):3865–3868. doi: https://doi.org/10.1103/PhysRevLett.77.3865.
  • [29] Slater JC. The Self-Consistent Field for Molecular and Solids: Quantum Theory of Molecular and Solids. Vol. 4. New York: McGraw-Hill; 1974.
  • [30] Perdew JP, Wang Y. Pair-distribution function and its coupling- constant average for the spin-polarized electron gas. Physical Review B. Condensed Matter 1992;46(20):12947– 12954. doi: https://doi.org/10.1103/physrevb.46.12947.
  • [31] Schaefer A, Horn H, Ahlrichs R. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. The Journal of Chemical Physics. 1992;97:2571.
  • [32] Schäfer A, Horn H, Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics. 1992;97(4):2571–2577. https://doi.org/10.1063/1.463096.
  • [33] Pearson RG. Hard and soft acids and bases. Journal of the American Chemical Society. 1963;85(22):3533–3539. https://doi.org/10.1021/ja00905a001.
  • [34] Pearson RG. Hard and soft acids and bases, HSAB. Part 1: Fundamental principles. Journal of Chemical Education. 1968;45(9):581–586. https://doi.org/10.1021/ed045p581.
  • [35] Reed AE, Weinstock RB, Weinhold F. Natural population analysis. The Journal of Chemical Physics. 1985;83(2):735–746. https://doi.org/10.1063/1.449486.
  • [36] Jensen F. Introduction to Computational Chemistry. Chichester: Wiley; 2016
  • [37] Mayer I. Charge, bond order and valence in the AB initio SCF theory. Chemical Physics Letters. 1983;97(3):270–274. https://doi.org/10.1016/0009-2614(83)80005-0.
  • [38] Klamt A, Schüürmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society: Perkin Transactions 2. 1993;5:799–805. https://doi.org/10.1039/P29930000799.
  • [39] Geneste G, Morillo J, Finocchi F. Adsorption and diffusion of Mg, O, and O₂ on the MgO(001) flat surface. Journal of Chemical Physics. 2005;122(17). https://doi.org/10.1063/1.1886734.
  • [40] Freund HJ, Pacchioni G. Oxide Ultra-thin films on metals: New materials for the design of supported metal catalysts. Chemical Society Reviews. 2008;37(10):2224–2242. https://doi.org/10.1039/b718768h.
  • [41] Ge Q, Kose R, King DA. Adsorption energetics and bonding from femtomole calorimetry and from first principles theory. Advances in Catalysis. 2000;45(M):207–259. https://doi.org/10.1016/s0360-0564(02)45015-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6ab5efb-3a3b-458a-bce2-0c38fe3272ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.