PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biodegradacja związków fosfonowych przez grzyby

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Biodegradation of phosphonates by fungi
Języki publikacji
PL
Abstrakty
EN
Phosphonates are the group of organophosphorus compounds, which are characterized by the presence of covalent bond(s) between carbon and phosphorus atom in their structure. Both; the natural and synthetic phosphonic compounds, are encountered in various ecosystems, however because of their wide range of applications, the latter ones are considerably more frequently discussed. Regarding the broad spectrum of biological activity, capability to chelate metal cations and environmental stability of direct carbon to phosphorus bond under physiological conditions, phosphonic compounds found a variety of applications e.g. as pesticides, drugs, anticorrosive agents, additives to surfactants and flame resistant (partially)polymers. Such massive use of phosphonates, together with mentioned environmental stability of those compounds, results in their common presence as xenobiotic environmental pollutants. Scientific efforts dedicated to recognising the fate and biodegradation of phosphonic compounds in the environment had begun in 80’s last century. Currently it is known that many microorganisms, mainly bacteria, but also fungi, are able to decompose the C-P bond. Interestingly however, the number of known species of fungi that are able to biodegrade and/or to bio-transform the phosphonates, is relatively low. It seems to be surprising, because especially the fungi are known from their impressive skills to adaptation to various nutritional conditions. Such a thesis may be supported by the fact that the process of biodegradation of phosphonates may occur via several pathways. Enzymes which are known to catalyse this process are phosphonoacetaldehyde hydrolase, phosphonoacetate hydrolase, phosphonopyruvate hydrolase and C-P lyase complex. This article briefly presents the issue of degradation pathways of phosphonates, and the role of phosphonate- degrading fungi.
Rocznik
Strony
33--55
Opis fizyczny
Bibliogr. 69 poz., schem., tab.
Twórcy
  • Wydział Chemii, Uniwersytet Opolski, ul. Oleska 48, 45-052 Opole
autor
  • Wydział Chemii, Uniwersytet Opolski, ul. Oleska 48, 45-052 Opole
Bibliografia
  • [1] M.E. Richmond, J. Environ. Stud. Sci., 2018, 8, 416.
  • [2] J.W. McGrath, J.P. Chin, J.P. Quinn, Nat. Rev. Microbiol., 2013,11, 412.
  • [3] N. Stosiek, M. Klimek-Ochab, Biotechnologia, 2018, 99, 357.
  • [4] N. Stosiek, A. Terebieniec, A. Ząbek, P. Młynarz, H. Cieśliński, M. Klimek-Ochab, Bioorg. Chem., 2019, 93, 102866.
  • [5] K. Kavanagh, Fungi Biology and Application, John Wiley & Sons, 2005.
  • [6] http://www.catalogueoflife.org.
  • [7] G.W. Gooday, Fungal exoenzymes, in: The growing fungus, Springer Netherlands, 1994.
  • [8] A. Casadevall, J.D. Nosanchuk, P. Wiliamson, M.L. Rodrigues, Trends Microbiol., 2009, 17, 158.
  • [9] Z. Libudzisz, K. Kowal, Mikrobiologia techniczna, T.1. PWN, Warszawa, 2008.
  • [10] J.P. Quinn, A.N. Kulakova, N.A. Cooley, J.W. Mcgrath, Environ. Microbiol., 2007, 9, 2392.
  • [11] C. Ponnamperuma, Ann NY Acad Sci, 1972, 194, 56.
  • [12] W. Cooper, W.M. Onwo, J.R. Cronin, Geochim. Cosmochim. Acta, 1992, 56, 4109.
  • [13] G.P. Horsman, D.L. Zechel, Chem. Rev., 2017, 117, 5704.
  • [14] E. Rott, H. Steinmetz, J.W. Metzger, Sci. Total Environ., 2018, 615, 1176.
  • [15] W.W. Metcalf, W.A. Donk Annu Rev Biochem., 2009, 78, 65.
  • [16] M. Horiguchi, M. Kandatstu, Nature, 1959, 184, 901.
  • [17] D. Hendlin, E.O. Stapley, M. Jackson, H. Wallick, A.K. Miller, F.J. Wolf, T.W. Miller, L. Chaiet, F.M. Kahan, L.E. Foltz, H.B. Woodruff, J.M. Mata, S. Hernandez S. Mochales, Science, 1969, 166, 122.
  • [18] J. Shoji, T. Kato, H. Hinoo, J. Antibiot., 1986, 39, 1011.
  • [19] F.M. Kahan, J.S. Kahan, P.J. Cassidy, H. Kropp, Ann NY Acad Sci, 1974, 235, 122.
  • [20] M.E. Falagas, K.P. Giannopoulou, G.N. Kokolakis, P.I. Rafailidis, Clin. Infect. Dis. 2008, 46, 1069.
  • [21] T. Murakami, H. Anzai, S. Imai, A. Satoh, K. Nagaoka, C. J. Thompson, Mol. Gen. Genet., 1986, 205, 42.
  • [22] B. Nowack, Water Res., 2003, 37, 2533.
  • [23] P. Kafarski, B. Lejczak, Curr. Med. Chem., Anticancer Agents, 2001, 1, 301.
  • [24] E.D. Naydenova, P.T. Todorov, P.I. Mateeva, R.N. Zamfirova, N.D. Pavlov, S.B. Todorov, Amino Acids, 2010, 39, 1537.
  • [25] H. Zhan, Y. Feng, X. Fan,S. Chen, Appl. Microbiol. Biotechnol., 2018, 102, 5033.
  • [26] J. Lipok, H. Studnik, S. Gruyaert, Ecotoxicol. Environ. Saf., 2010, 73, 1681.
  • [27] A.B. Boxall, C.J. Sinclair, K. Fenner, D. Kolpin, S. J. Maund, Environ. Sci. Technol., 2004, 38, 368A.
  • [28] http://www.eolss.net/Sample-Chapters/C17/E6-58-09-08.pdf
  • [29] I. Greń, Chemik, 2012, 8, 835.
  • [30] OECD Guildelines for Testin of Cemicals, Section 3. Degradation and Accumulation,” 1992.
  • [31] S.V. Kononova, M.A. Nesmeyanova, Biochemistry (Moscow), 2002, 67, 184.
  • [32] D. Drzyzga, G. Forlani, J. Vermander, P. Kafarski, J. Lipok, Environ. Microbiol, 2017, 19, 1065.
  • [33] J. Lipok, T. Cierpicki, P. Kafarski, Phosphorus Sulfur and Silicon, 2002, 177, 1657.
  • [34] P. Lenartowicz, P. Kafarski, J. Lipok, Biodegradation, 2014, 26, 65.
  • [35] T. Krzyśko-Łupicka, W. Strof, M. Skorupa, P. Wieczorek, P. Kafarski, Appl. Microbiol. Biotechnol., 1997, 48, 549.
  • [36] G.M. Fu, Y. Chen, R. Li, X.Q. Yuan, C.M. Liu, Y. Wan, Prep. Biochem. Biotechnol., 2017, 47, 782.
  • [37] C.S. Carranza, J.P. Regnicoli, M.E. Aluffi, N. Benito, S.M. Chiacchiera, C.L. Barberis, C.E. Magnoli, Int. J. Environ. Sci. Technol., 2019, 16, 7673.
  • [38] D. Bode, R., Birnbaum, Biochem. Physiol. Pflanzen., 1989, 184,163.
  • [39] N.G. Ternan, G. Mcmullan, FEMS Microbiol. Lett., 2000, 184, 237.
  • [40] J.V. Castro, M.C.R. Peralba, M.A.Z. Ayub, J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, 2007, 42, 883.
  • [41] M. Klimek-Ochab, A. Mucha, E. Zymańczyk-Duda, Curr. Microbiol., 2014, 68, 330.
  • [42] M. Klimek-Ochab, A. Obojska, A. M. Picco, B. Lejczak, Biodegradation, 2007, 18, 223.
  • [43] M. Klimek, B. Lejczak, P. Kafarski, G. Forlani, Pest. Manag. Sci., 2001, 57, 815.
  • [44] E. Zboinska, I. Maliszewska, B. Lejczak, P. Kafarski, Lett. Appl. Microbiol., 1992, 15, 269.
  • [45] В. Bujacz, P. Wieczorek, T. Krzyśko-Łupicka, Z. Gołąb, В. Lejczak, P. Kafarski, Appl. Environ. Microbiol., 1995, 61, 2905.
  • [46] G. Forlani, M. Klimek-Ochab, J. Jaworski, B. Lejczak, A.M. Picco, Microbiol. Res., 2006, 110, 1455.
  • [47] R. Bouchiat, E. Veignie, D. Grizard, C. Soebert, M. Vigier, C. Rafin, Desalin. Water Treat., 2016, 57, 6740.
  • [48] N. Arfarita, T. Imai, A. Kanno, T. Yarimizu, S. Xiaofeng, W. Jie, T. Higuchi, R. Akada, Biotechnol. Biotechnol. Equip., 2013, 27, 3518.
  • [49] M. Klimek-Ochab, G. Raucci, B. Lejczak, G. Forlani, Res. Microbiol., 2006, 157, 125.
  • [50] G. Mcmullan, F. Harrington, J. P. Quinn, Appl. Environ. Microbiol., 1992, 58, 1364.
  • [51] A. N. Kulakova, L. A. Kulakov, N.V. Akulenko, V.N. Ksenzenko, J.T.Hamilton, J.P. Quinn, J. Bacteriol., 2001, 183, 3268.
  • [52] A.N. Kulakova, L.A. Kulakov, J.W. McGrath, J.P. Quinn, Microb. Biotechnol., 2009, 2, 234.
  • [53] J.W. McGrath, G.B. Wisdom, G. Mcmullan, M.J. Larkin, J.P. Quinn, Eur. J. Biochem., 1995, 230, 225.
  • [54] J.W. Mcgrath, A.N. Kulakova, J.P. Quinn, J. Appl. Microbiol., 1999, 86, 834.
  • [55] S.N. O’Loughlin, R.L. Graham, G. Mcmullan, N.G. Ternan, FEMS Microbiol. Lett., 2006, 261, 133.
  • [56] J.M. La Nauze, J.R. Coggins, H.B.F. Dixon, Biochem. J., 1977, 165, 409.
  • [57] C. Dumora, A.M. Lacoste, A. Cassaigne, Biochim. Biophys. Acta (BBA)/Protein Struct. Mol., 1989, 997, 193.
  • [58] M.C. Morais, W. Zhang, A.S. Baker, G. Zhang, D. Dunaway-Mariano, K.N. Allen, Biochemistry, 2000, 39, 10385.
  • [59] A.S. Baker, M.J. Ciocci, W.W. Metcalf, J. Kim, P.C. Babbitt, B.L. Wanner, B.M. Martin, D. Dunaway-Mariano, Biochemistry, 1998, 37, 9305.
  • [60] D.B. Olsen, T.W. Hepburn, S.I. Lee, B.M. Martin, P.S. Mariano, D. Dunaway-Mariano, Arch. Biochem. Biophys., 1992, 296, 144.
  • [61] N.G. Ternan, J.W. Grath, G.M. Mullan, J.P. Quinn, Worls J. Microbiol. Biotechnol., 1998, 14, 635.
  • [62] N.G. Ternan, J.T.G. Hamilton, J.P. Quinn, Arch. Microbiol., 2000, 173, 35.
  • [63] A.N. Kulakova, G.B. Wisdom, L.A. Kulakov, J.P. Quinn, J. Biol. Chem., 2003, 278, 23426.
  • [64] A.N. Kulakova, L.A. Kulakov, J.F. Villarreal-Chiu, J.A. Gilbert, J.W. Mcgrath, J.P. Quinn, FEMS Microbiol. Lett., 2009, 292, 100.
  • [65] L.Z. Avila, K.M. Draths, J.W. Frost, Bioorganic Med. Chem. Lett., 1991, 1, 51.
  • [66] M.C. Manav, N. Sofos, B. Hove-Jensen, D.E. Brodersen, BioEssays, 2018, 40, 1800091.
  • [67] P. Seweryn, L.B. Van, M. Kjeldgaard, C.J. Russo, L.A. Passmore, B. Hove-Jensen, B. Jochimsen, D.E. Brodersen, Nature, 2015, 525, 68.
  • [68] B. Delaney, J. Zhang, G. Carlson, J. Schmidt, B. Stagg, B. Comstock, A. Babb, C. Finlay, R.F. Cressman, G. Ladics, A. Cogbum, D. Siehl, L. Bardina, H. Sampson, Y. Han, Toxicol. Sci., 2008, 102, 425.
  • [69] L. Pizzul, M.D.P. Castillo, J. Stenström, Biodegradation, 2009, 20, 751.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6aafc3c-a3e8-45cc-8327-36d93ae7f539
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.