PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of linear periodically time-varying circuits based on their frequency characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Linear circuits with constant parameters are typically analysed based on their frequency characteristics, assuming the invariance of harmonic signals as they pass through the system. However, in linear periodically time-varying circuits, this invariance does not hold. The output signal in such circuits is a periodic signal composed of harmonic components at various frequencies determined by both the input signal and the periodic variation of the circuit parameters. This results in a frequency spectrum that includes harmonics beyond the frequency of the input signal, influenced by the interaction between the input and the parameter variations. This paper investigates the behaviour of parametric devices by examining specific frequency ratios between the input signal and the variation in circuit parameters. The results are demonstrated using a parametric amplifier model and a long transmission line, analysed in the frequency domain.
Rocznik
Strony
757--772
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Radioelectronic Technologies of Information Systems Lviv Polytechnic National University, Profesorska St., Building 11, Lviv, 79013, Ukraine
  • Department of Radioelectronic Technologies of Information Systems Lviv Polytechnic National University, Profesorska St., Building 11, Lviv, 79013, Ukraine
autor
  • Department of Electrical Engineering and Computer Science, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
Bibliografia
  • [1] Shapovalov Y., Bachyk D., Romaniuk R., Shapovalov I., Parametric Matrix Models of Parametric Circuits and Their Elements in Frequency Domain, Radioelectronics and Communications Systems, vol. 64, pp. 413–425 (2021), DOI: 10.3103/S0735272721080021 .
  • [2] Shapovalov Y., Bachyk D., Detsyk K., Multivariate Modelling of the LPTV Circuits in the MAOPCs Software Environment, Przeglad Elektrotechniczny, vol. 98, pp. 158–163 (2022), DOI: 10.15199/48.2022.07.26.
  • [3] Piotrowska E., Analysis of linear continuous-time systems by the use of the conformable fractional calculus and Caputo, Archives of Electrical Engineering, vol. 67, pp. 629–639 (2018), DOI: 10.24425/123668.
  • [4] Vanassche P., Gielen G., Sansen W., Symbolic Modelling of Periodically Time-Varying Systems Using Harmonic Transfer Matrices, IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, pp. 1011–1024 (2002), DOI: 10.1109/TCAD.2002.801098.
  • [5] Piwowar A., Grabowski D., Modelling of the first-order time-varying filters with periodically variable coefficients, Mathematical Problems in Engineering, vol. 2017, 9621651 (2017), DOI: 10.1155/2017/9621651.
  • [6] Shapovalov Y. I., Miskiv V. M., Bachyk D. R., Detsyk K. O., Implementation of the SubCircuits Method in the System UDF MAOPCs of the Analysis of LTV Circuits in the Frequency Domain, in Proc. 2020 IEEE 15th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), LvivSlavske, Ukraine, pp. 825–828 (2020), DOI: 10.1109/TCSET49122.2020.235551.
  • [7] Shapovalov Y., Bachyk D., Detsyk K., Romaniuk R., Shapovalov I., Frequency Symbolic Analysis of Linear Periodically Time-Variable Circuits by Sub-Circuits Method, in Proc. 2022 23rd International Conference on Computational Problems of Electrical Engineering (CPEE), Zuberec, Slovakia, pp. 1–4 (2022), DOI: 10.1109/CPEE56060.2022.9919673.
  • [8] Shapovalov Y., Mankovskyy S., Bachyk D., Piwowar A., Chruszczyk Ł., Grzechca D., Machine Learning Use Cases in the Frequency Symbolic Method of Linear Periodically Time-Variable Circuits Analysis, Appl. Sci., vol. 14, 7926 (2024), DOI: 10.3390/app14177926.
  • [9] Hambley A.R., Electrical Engineering: Principles and Applications, Pearson Education (2017).
  • [10] Mombello E. E., Modeling of a coil system considering frequency-dependent inductances and losses II. Equivalent circuit synthesis, Electrical Engineering, vol. 84, pp. 11–19 (2002), DOI: 10.1007/s002020100095.
  • [11] Ludwig R., Bogdanov G., RF Circuit Design: Theory and Applications, Pearson (2008).
  • [12] Damgov V., Nonlinear and Parametric Phenomena: Theory and Applications in Radiophysical and Mechanical Systems. Hackensack, World Scientific Publishing Company (2004).
  • [13] Atabekov G. I. Theoretical Foundations of Electrical Engineering, Linear Electrical Circuits, 7th ed. Saint Petersburg: Lan. (in Russian), ISBN 978-5-8114-0800-9 (2009).
  • [14] Demirchyan K. S., Neiman L. R., Korovkin N. V., Chechurin V. L. Theoretical foundations of electrical engineering, Peter Publ., 4th ed., St. Petersburg, vol. 3 (2006).
  • [15] Zadeh A., Frequency Analysis of Variable Networks, Proceedings of the IRE, vol. 38, pp. 291–299 (1950).
  • [16] Hossain E., MATLAB and Simulink Crash Course for Engineers, Springer International Publishing (2022).
  • [17] Micro-Cap 12, Electronic Circuit Analysis Program. Reference Manual, Spectrum Software (2018).
  • [18] Baskakov S.I., Radiotechnical circuits and signals, Moscow: “High school” Publisher (in Russian), ISBN 5-06-003843-2 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6a90fbc-fe38-4cb2-a585-ee941734e9cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.