PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cooling holes with different structures effects on coolant cross flow and heat transfer at the outlet of the combustion chamber

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The major effects of cylindrical and row trenched cooling holes with angles of 𝛼 = 30°, 𝛽 = 0°, 𝛼 = 40°, 𝛽 = 0° and 𝛼 = 50°, 𝛽 = 0° at BR=3.18 on the effectiveness of film cooling near the combustor end wall surface is an important subject to study in detail. In the current study, researchers used a FLUENT package 16/11 to simulate a 3-D model of a Pratt and Whitney gas turbine engine. In this research, RNG turbulence model K-ε model was used to analyze the flow behavior on the passage ways of internal cooling. In the combustor simulator, the dilution jets and cooling flow staggered in the streamwise direction and aligned in the spanwise direction as well. In comparison with the baseline case of cooling holes, the application of trenched hole near the end wall surface increased the effectiveness of film cooling up to 100% for different trench cases.
Rocznik
Strony
141--148
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, Najafabad Branch,Islamic Azad University, Najafabad, Iran
  • Department of Thermo-fluid, Faculty of Mechanical Engineering, University Technology of Malaysia, Skudai, Johor, Malaysia
Bibliografia
  • 1. Ai W. R., Laycock G., Rappleye D. S., Fletcher T. H., Bons J. P. (2011). Effect of particle size and trench configuration on deposition from fine coal flyash near film cooling holes. Energy and Fuels, Vol. 25, pp. 1066–1076.
  • 2. Anderson J. B., Wilkes E. K., McClintic J. W., Bogard D. G., (2016), Effects of freestream Mach number, Reynolds number, and boundary layer thickness on film cooling effectiveness of shaped holes. In Turbo Expo: Power for Land, Sea, and Air, Vol. 49804, pp. V05CT19A003).
  • 3. Abdullah K., Funazaki K. I. (2012). Effects of Blowing Ratio on Multiple Shallow Angle Film Cooling Holes. In Applied Mechanics and Materials, Vol. 225, pp. 49-54.
  • 4. Nasir H., Ekkad S., Acharya V. S. (2001). Effect of compound angle injection on flat surface film cooling with large streamwise injection angle. Experimental Thermal and Fluid Science Journal, Vol. 25, No. 1-2, pp. 23-29.
  • 5. Shine S.R., Sunil Kumar S., Suresh B. N. (2013). Internal wall-jet film cooling with compound angle cylindrical holes. Energy Conversion and Management, Vol. 68, pp. 54-62.
  • 6. Zhang C., Wang Z., (2018). Effect of the downstream crescent-shaped block height on the flat-plate film flow and cooling performance. Journal of Applied Mechanics and Technical Physics, Vol. 59, No. 5, pp. 951-961.
  • 7. Tarchi L., Facchini B., Maiuolo F., Coutandin D. (2012). Experimental Investigation on the Effects of a Large Recirculating Area on the Performance of an Effusion Cooled Combustor Liner. Journal of Engineering for Gas Turbines and Power, Vol. 134, No. 4, pp. 041505-1-041505-9.
  • 8. Milanes D. W., Kirk D. R., Fidkowski K. J., Waitz I. A. (2006). Gas Turbine Engine Durability Impacts of High Fuel-Air Ratio Combustors: Near Wall Reaction Effects on Film-Cooled Backward-Facing Step Heat Transfer. Journal of Engineering for Gas Turbines and Power, Vol. 128, No. 2, pp. 318-325.
  • 9. Dai H., Zhang J., Ren Y., Liu N., Lin, J., (2021). Effect of cooling hole configurations on combustion and heat transfer in an aero-engine combustor. Applied Thermal Engineering, Vol. 182, pp. 115664.
  • 10. Li L., Liu T., Peng X. F. (2005). Flow characteristics in an annular burner with fully film cooling. Applied Thermal Engineering, Vol. 25, No. 17-18, pp. 3013-3024.
  • 11. Vakil S. S., Thole K. A. (2005). Flow and Thermal Field Measurements in a Combustor Simulator Relevant to a Gas Turbine Aero engine. Journal of Engineering for Gas Turbines and Power, Vol. 127, No. 2, pp. 257-267.
  • 12. Kianpour E., Sidik N.A.C., Golshokouh I. (2014). Film cooling effectiveness in a gas turbine engine: a review. Jurnal Teknologi, Vol. 71, No. 2, pp. 25–35.
  • 13. Zhang X. Z., Hassan I. (2006). Numerical investigation of heat transfer on film cooling with shaped holes. International Journal of Heat and Fluid Flow, Vol. 16, No. 8, pp. 848-869.
  • 14. Gao Z., Narzary D., Han J. C. (2009). Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling. Journal of Turbomachinery, Vol. 131, No. 4, pp. 041004-1-041004-11.
  • 15. Colban W., Thole K. A., Haendler M. (2008). A comparison of cylindrical and fan-shaped film-cooling holes on a vane end wall at low and high freestream turbulence levels. Journal of Turbomachinery, Vol. 130, No. 3, pp. 031007-1-031007-9.
  • 16. Cao N., Li X., Wu Z., Luo X., (2020). Effect of film hole geometry and blowing ratio on film cooling performance. Applied Thermal Engineering, Vol. 165, pp.114578.
  • 17. Saumweber C., Schulz A. (2012). Free-stream effects on the cooling performance of cylindrical and fan-shaped cooling holes. Journal of Turbomachinery, Vol. 134, No. 6, pp. 061007-1-061007-12.
  • 18. Barigozzi G., Franchini G. Perdichizzi A., Ravelli S. (2010). Film cooling of a contoured end wall nozzle vane through fan-shaped holes. International Journal of Heat and Fluid Flow, Vol. 31, No. 4, pp. 576-585.
  • 19. Hou R., Wen F., Luo Y., Tang X., Wang S. (2019). Large eddy simulation of film cooling flow from round and trenched holes”. International Journal of Heat and Mass Transfer, Vol. 144, pp. 118631.
  • 20. Song Y. J., Park S. H., Kang Y. J., Kwak J. S. (2021). Effects of trench configuration on the film cooling effectiveness of a fan-shaped hole. International Journal of Heat and Mass Transfer, Vol. 178, pp. 121655.
  • 21. Stitzel S., Thole K. A. (2004). Flow field computations of combustor-turbine interactions relevant to a gas turbine engine. Journal of Turbomachinery, Vol. 126, No. 1, pp. 122-129.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6a6ea16-b03c-4ba4-9332-37faec03b126
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.