PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-optimal control of linear fractional systems with variable coefficients

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Linear systems described by fractional differential equations (FDEs) with variable coefficients involving Riemann–Liouville and Caputo derivatives are examined in the paper. For these systems, a solution of the initial-value problem is derived in terms of the generalized Peano–Baker series and a time-optimal control problem is formulated. The optimal control problem is treated from the convex-analytical viewpoint. Necessary and sufficient conditions for time-optimal control similar to that of Pontryagin’s maximum principle are obtained. Theoretical results are supported by examples.
Rocznik
Strony
375--386
Opis fizyczny
Bibliogr. 35 poz., wykr.
Twórcy
  • Faculty of Mathematics and Computer Science, University of Warmia and Mazury, ul. Słoneczna 54, 10-710 Olsztyn, Poland
  • Institute of Informatics, University of Gdańsk, ul. Wita Stwosza 57, 80-308 Gdańsk, Poland
Bibliografia
  • [1] Aumann, R.J. (1965). Integrals of set-valued functions, Journal of Mathematical Analysis and Applications 12(1): 1–12.
  • [2] Baake, M. and Schlägel, U. (2011). The Peano–Baker series, Proceedings of the Steklov Institute of Mathematics 275(1): 155–159.
  • [3] Balaska, H., Ladaci, S., Djouambi, A., Schulte, H. and Bourouba, B. (2020). Fractional order tube model reference adaptive control for a class of fractional order linear systems, International Journal of Applied Mathematics and Computer Science 30(3): 501–515, DOI: 10.34768/amcs-2020-0037.
  • [4] Bergounioux, M. and Bourdin, L. (2020). Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints, ESAIM: Control, Optimisation and Calculus of Variations 26: 35, DOI: 10.1051/cocv/2019021.
  • [5] Blagodatskikh, V.I. and Filippov, A.F. (1985). Differential inclusions and optimal control, Trudy Matematicheskogo Instituta Imeni VA Steklova 169: 194–252.
  • [6] Bourdin, L. (2018). Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems, Differential and Integral Equations 31(7/8): 559–594.
  • [7] Chikrii, A. and Eidelman, S. (2000). Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order, Cybernetics and System Analysis 36(3): 315–338.
  • [8] Chikrii, A. and Matichin, I. (2008). Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann–Liouville, Caputo, and Miller–Ross, Journal of Automation and Information Sciences 40(6): 1–11.
  • [9] Datsko, B. and Gafiychuk, V. (2018). Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point, Fractional Calculus and Applied Analysis 21(1): 237–253.
  • [10] Datsko, B., Podlubny, I. and Povstenko, Y. (2019). Time-fractional diffusion-wave equation with mass absorption in a sphere under harmonic impact, Mathematics 7(5): 433.
  • [11] Diethelm, K. (2010). The Analysis of Fractional Differential Equations, Springer, Berlin/Heidelberg.
  • [12] Dzieliński, A. and Czyronis, P. (2013). Fixed final time and free final state optimal control problem for fractional dynamic systems—Linear quadratic discrete-time case, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(3): 681–690.
  • [13] Eckert, M., Nagatou, K., Rey, F., Stark, O. and Hohmann, S. (2019). Solution of time-variant fractional differential equations with a generalized Peano-Baker series, IEEE Control Systems Letters 3(1): 79–84.
  • [14] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.
  • [15] Kaczorek, T. and Idczak, D. (2017). Cauchy formula for the time-varying linear systems with Caputo derivative, Fractional Calculus and Applied Analysis 20(2): 494–505.
  • [16] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
  • [17] Kamocki, R. (2014). Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences 37(11): 1668–1686.
  • [18] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam.
  • [19] Li, Y., Chen, Y. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers and Mathematics with Applications 59(5): 1810–1821.
  • [20] Lorenzo, C.F. and Hartley, T.T. (2000). Initialized fractional calculus, International Journal of Applied Mathematics 3(3): 249–265.
  • [21] Luchko, Y. (2009). Maximum principle for the generalized time-fractional diffusion equation, Journal of Mathematical Analysis and Applications 351(1): 218–223.
  • [22] Malesza, W., Macias, M. and Sierociuk, D. (2019). Analytical solution of fractional variable order differential equations, Journal of Computational and Applied Mathematics 348: 214–236.
  • [23] Martínez, L., Rosales, J., Carreño, C. and Lozano, J. (2018). Electrical circuits described by fractional conformable derivative, International Journal of Circuit Theory and Applications 46(5): 1091–1100.
  • [24] Matychyn, I. (2019). Analytical solution of linear fractional systems with variable coefficients involving Riemann-Liouville and Caputo derivatives, Symmetry 11(11): 1366.
  • [25] Matychyn, I. and Onyshchenko, V. (2015). Time-optimal control of fractional-order linear systems, Fractional Calculus and Applied Analysis 18(3): 687–696.
  • [26] Matychyn, I. and Onyshchenko, V. (2018a). On time-optimal control of fractional-order systems, Journal of Computational and Applied Mathematics 339: 245–257.
  • [27] Matychyn, I. and Onyshchenko, V. (2018b). Optimal control of linear systems with fractional derivatives, Fractional Calculus and Applied Analysis 21(1): 134–150.
  • [28] Matychyn, I. and Onyshchenko, V. (2019). Optimal control of linear systems of arbitrary fractional order, Fractional Calculus and Applied Analysis 22(1): 170–179.
  • [29] Matychyn, I. and Onyshchenko, V. (2020). Solution of linear fractional order systems with variable coefficients, Fractional Calculus and Applied Analysis 23(3): 753–763.
  • [30] Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego.
  • [31] Rockafellar, R.T. (1970). Convex Analysis, Princeton University Press, Princeton.
  • [32] Si, X., Yang, H. and Ivanov, I.G. (2021). Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems, International Journal of Applied Mathematics and Computer Science 31(1): 17–28, DOI: 10.34768/amcs-2021-0002.
  • [33] Sierociuk, D. and Dzieliński, A. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129–140.
  • [34] Skovranek, T., Macias, M., Sierociuk, D., Malesza, W., Dzielinski, A., Podlubny, I., Pocsova, J. and Petras, I. (2019). Anomalous diffusion modeling using ultracapacitors in domino ladder circuit, Microelectronics Journal 84: 136–141.
  • [35] Zorich, V.A. and Paniagua, O. (2016). Mathematical Analysis II, Springer, Berlin/Heidelberg.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6a5f18e-0a02-4055-959b-0969a587ab48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.