PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Ability of Leaves and Rhizomes of Aquatic Plants to Accumulate Macro- and Micronutrients

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The samples of macrophytes and bottom sediments originated from the littoral zone of the Słupia River were collected in summer 2013. The aim of this study was to compare the properties of the accumulation of leaves and rhizomes of Glyceria maxima, Phragmites australis, Typha latifolia and Phalaris arundinacea for macro- and micronutrients. The largest quantities of macroelements were found in the leaves of the examined species, and microelements dominated the rhizomes of most examined macrophytes except for Mn in P.australis and T.latifolia. The obtained results show that N and K dominated in the leaves of P.arundinacea, P and Mg in the leaves of P.australis, and Ca in the leaves of G.maxima. The largest quantities of N, P and K were cumulated in the rhizomes of P.arundinacea, while Mg and Ca in the rhizome of T.latifolia. The leaves of aquatic plants accumulated from 1354.9 mmolc·kg-1 (T.latifolia) to 1844.0 mmolc·kg-1 (P.arundinacea), and rhizomes from 985.8 mmolc·kg-1 (G.maxima) to 1335.2 mmolc·kg-1 (P.arundinacea) of all the analyzed components. In these species of macrophytes lower accumulated value of the sum of macro- and microelements were found in the rhizomes. The share of nitrogen was 42.4–59.8% of this amount, phosphorus 4.3–8.6%, potassium 22.8–35.1%, calcium from 2,6% to 12.4%, magnesium 3.0–7.5%, and heavy metals were from 0.6% (G.maxima) to 1.2% (T.latifolia) in leaves and from 2.2% (T.latifolia) to 8.7% (G.maxima) in rhizomes.
Rocznik
Strony
198--205
Opis fizyczny
Bibliogr. 40 poz., tab., rys.
Twórcy
  • Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
autor
  • Department of Land Reclamation and Environmental Development, University of Warmia and Mazury in Olsztyn, Plac Łódzki 2, 10-719 Olsztyn, Poland
autor
  • Department of Geoecology and Geoinformation, Pomeranian University in Słupsk, Partyzantów St. 27, 76- 200 Słupsk, Poland
autor
  • Department of Land Reclamation and Environmental Development, University of Warmia and Mazury in Olsztyn, Plac Łódzki 2, 10-719 Olsztyn, Poland
Bibliografia
  • 1. Aksoy A., Demirezen D., Duman F. 2005. Bioaccumulation, detection and analyses of heavy metal pollution in Sultan marsh and its environment. Water Air Soil Poll. 164, 241–255.
  • 2. Alberts P.H., Camardese M.B. 1993. Effects as acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands. Environ. Toxicology Chem. 12 (6), 959–967.
  • 3. Alloway B. J., 1995. Soil processes and the behavior of metals. In: Alloway B.J. (ed.) Heavy metals in soils. 2nd ed. Blackie, Glasgow, 7–28.
  • 4. Baldantoni D., Alfani A., Di Tommasi P., Bartoli G., Virzo de Santo A. 2004. Assessment of macro and microelement accumulation capability of two aquatic plants. Environ. Pollut. 130, 149–156.
  • 5. Baldantonid D., Ligrone R., Alfania A. 2009. Macro-and trace-element concentration in leaves and roots of Phragmites australis in volcanic lake in Southern Italy. J. Geochem. Explor. 101, 166.
  • 6. Bernez I., Daniel, H., Haury J. 2001. Effects of perturbations on the aquatic vegetation of regulated river. Bull. Fr. Pêche Pisc., 357-60, 169–189.
  • 7. Bonanno, G., 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotox. Environ. Safe. 74, 1057–1064.
  • 8. Bonanno, G., Lo Giudice, R., 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic. 10, 639–645.
  • 9. Bragato, C., Schiavon, M., Polese, R., Ertani, A., Pittarello, M., Malagoli, M., 2009. Seasonal variations of Cu Zn, Ni and Cr concentration in Phragmites australis (Cav.) Trin ex Steudel in a constructed wetland of North Italy. Desalination 246, 35–44.
  • 10. Burke D.J., Weis J.S., Weis P. 2000. Release of metals by the leaves of salt marsh grasses Spartina alterni flora and Phragmites australis. Estuar. Coast. Shelf Sci. 51, 153–159.
  • 11. Cardwell A.J., Hawker D.W., Greenway M. 2002. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48, 653–663.
  • 12. Demirezen D., Aksoy A. 2004. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living insulta Marsh (Kayseri, Turkey). Chemosphere, 56, 685–696.
  • 13. Deng H., Ye Z.H., Wong M. H. 2004. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China, Environ. Pollut. 132, 29–40.
  • 14. Dummee V., Kruatrachue M., Trinachartvanit W., Tanhan P., Pokethitiyook P., Damrongphol P. 2012. Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand. Ecotox. Environ. Safe. 86, 204–212.
  • 15. Fitzgerald E.J, Caffrey J.M, Nesaratnam S.T., Mc Loughlin P. 2003. Copper and lead concentrations in salt marsh plants on the Suir estuary, Ireland. Environ. Pollut. 123, 67–74.
  • 16. Garbisu C., Alkorta I. 2003. Basic concepts on heavy metal soil bioremediation. Eur. J. Min. Proc. Environ. Prot. 13, 58–66.
  • 17. Güsewell S. 2004. N:P ratios In terrestrial plants: variation and functional significance. New Phytologist 164, 243–266.
  • 18. Hozhina E.I., Khramov A.A., Gerasimov P.A., Kumarkov A.A., 2001. Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. J. Geochem. Explor. 74, 153–162.
  • 19. Kabata-Pendias A., Pendias H. 1999. Biogeochemistry of trace elements, Polish Scientific Publishing, Warszawa.
  • 20. Kabata-Pendias A., Szteke B. 2005. Trace elements in soil-plant system. Inżynieria Ekologiczna 26, 28–29.
  • 21. Klink A., Wisłocka M., Musiał M., Krawczyk J. 2013. Macro- and trace- elements accumulation in Typha angustifolia L. and Typha latifolia L. organs and their use in bioindycation. Pol. J. Environ. Stud. 22, 1, 183–190.
  • 22. Klumpp A., Bauer K., Franz-Gerstein C., de Menezes M. 2002. Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cachoeira in Bahia (Brazil). Environ. Intern., 28, 165-171.
  • 23. Kohler A., Schneider S. 2003. Macrophytes as bioindicators. Arch. Hydrobiol., Suppl., 147, 17–31.
  • 24. Letachowicz B., Krawczyk J., Klink A. 2006. Accumulation of heavy metals in organs of Typha lalifolia L., Pol. J. Environ. Stud. 15 (2a), 407–409.
  • 25. Mays P.A., Edwards G.S. 2001. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage, Ecol. Eng. 16, 487–500.
  • 26. Ostrowska A., 1987. Application of ANE value and shares of individual elements in this value for determining the difference between various plant species. Genetic aspects of plant mineral nutrition, 27 43, Martinus Nijhoff Pub. (Plant and Soil).
  • 27. Parzych A., Sobisz Z., Cymer M., 2015. Preliminary research of heavy metals content by aquatic macrophytes taken from surface water (northern Poland). Desalination and Water Treatment, in press.
  • 28. Parzych A., Sobisz Z., 2012: The macro- and microelemental content of Pinus sylvestris L. and Pinus nigra Arn. needles in Cladonio-Pinetum habitat of the Słowiński National Park, Forest Research Papers 73 (4), 295–303.
  • 29. Salati S., Moore F., 2009. Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran, Environ. Monit. Assess. 164, 677–689.
  • 30. Salt D.E., Kramer U., 2000. Mechanisms of metal hyperaccumulation in plants, phytoremediation of toxic metals: Using plants to clean up the environment, In: I. Raskin and B.D. Ensley (Eds.), Wiley and Sons, 231–246.
  • 31. Samecka-Cymerman A., Kempers A.J. 2002. Aquatic macrophytes as biomonitors of pollution by textile industry. Bull. Envi. Cont. Tox., 69, 82–96.
  • 32. Sasmaz A., Obek E., Hasar H. 2008. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent, Ecol. Eng. 33, (3-4), 78.
  • 33. Schneider S., Melzer A. 2004. Sediment and water nutrient characteristics in patches submerged macrophytes in running waters. Hydrobiologia, 527, 195–207.
  • 34. Schulz M., Kozerski H.P., Pluntke T., Rinke K. 2003. The influence of macrophyte on sedimentation and nutrient retention in the lower River Spree (Germany). Water Res., 37, 569–578.
  • 35. Sharma P., Asaeda T., Manatunge J., Fijino T. 2006. Nutrient cycling in a natural stand of Typha angustifolia J. Freshwater Ecol. 21, 431–438.
  • 36. Teuchies J., Jacobs S., Oosterlee L., Bervoets L., Meire P. 2013. Role of plants in metal cycling in a tidal wetland: Implications for phytoremediation, Sci. Tot. Environ. 445–446, 146–154.
  • 37. Thiébaut G., Muller S. 2003. Linking phosphorus pools of water, sediment and macrophytes in running waters. Ann. Limnol - Int. J. Lim., 39, 307–316.
  • 38. Vardanyan L.G., Ingole B.S., 2006. Studies of heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems, Environ. Internat. 32, 208–218.
  • 39. Zhang M., Cui L., Sheng L., Wang Y., 2009. Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecol. Eng. 35, 563–569.
  • 40. Zhiguo X., Baixing Y., He Y., Changchum S. 2007. Nutrient limitation and wetland botanical diversity in northeast China: can fertilization influence on species richness? Soil Science 172, 1, 86–93.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6a31789-8466-427a-ab97-e1fa2d449d45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.