PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation of local properties of the Fe-Si alloy subjected to mechanical and laser cutting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effective design of energy-saving electric motors with efficiency class IE4 and higher requires the use of material characteristics that take into account the core shaping process. Therefore, it becomes necessary to use analytical or numerical models that take into account the change of local properties of Fe-Si material. The aim of the work is to indicate a useful analytical model for estimating the local magnetic permeability of the material, as well as to understand the reasons for these changes. For this purpose, low-loss ferromagnetic materials cut with a guillotine and a laser were tested. Rectangular samples, cut at an angle of 0 degrees in relation to the rolling direction, were subjected to macroscopic and microscopic examinations. Finally, the main reasons for changes in material characteristics for both cutting technologies were indicated. Therefore, the proposed model takes into account not only the cutting technology used, but also the current width of the tested strip, for which the material characteristics are to be determined. The parameters of the analytical model are determined on the basis of a limited number of measurements carried out on samples of a simple geometric shape.
Rocznik
Strony
697--713
Opis fizyczny
Bibliogr. 31 poz., fig., tab.
Twórcy
  • Institute of Mechatronics and Information Systems, Lodz University of Technology Stefanowskiego 22, 90-537 Łódź, Poland
  • Department of Materials Engineering, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-201 Częstochowa, Poland
Bibliografia
  • [1] Liu H., Lee J., Optimum design of an IE4 line-start synchronous reluctance motor considering manufacturing process loss effect, IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3104–3114 (2018), DOI: 10.1109/TIE.2017.2758738.
  • [2] De Almeida A.T., Fereira F.J., Baoming G., Beyond induction motor – Technology trends to move up efficiency, IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2103–2114 (2014), DOI:10.1109/TIA.2013.2288425.
  • [3] Dorrell D.G., The challenges of meeting IE4 efficiency standards for induction and other machines, Proceedings of IEEE International Conference on Industrial Technology, Busan, South Korea, pp. 213–218 (2014), DOI: 10.1109/ICIT.2014.6894941.
  • [4] Cavagnino A., Vaschetto S., Ferraris L., Gmyrek Z., Agamloh E., Bramerdorfer G., Towards an IE4 efficiency class for induction motors with minimal manufacturer impact, Proceedings of IEEE Energy Conversion Congress and Exposition, Portland, USA, pp. 289–296 (2018), DOI: 10.1109/ECCE.2018.8557586.
  • [5] Kerdsup B., Kreuawan S., Design of synchronous reluctance motors with IE4 energy efficiency standard competitive to BLDC motors used for blowers in an conditioners, Proceedings of IEEE International Electric Machines and Drives Conference, Miami, USA, pp. 1–6 (2017), DOI: 10.1109/IEMDC. 2017.8002025.
  • [6] Wolnik T., Opach S., Cyganik Ł., Jarek T., Szekeres V., Design methods for limiting rotor losses in a fractional slot PMSM motor with high power density, Archives of Electrical Engineering, vol. 71, no. 4, pp. 963–979 (2022), DOI: 10.24425/aee.2022.142119.
  • [7] Arshad W.M., Ryckebush T., Magnussen F., Lendenmann H., Soulard J., Eriksson B., Malmros B., Incorporating lamination processing and component manufacturing in electrical machine design tools, Proceedings of IEEE Industry Applications Annual Meeting, New Orleans, USA, pp. 94–102 (2007), DOI: 10.1109/07IAS.2007.21.
  • [8] Clerc A.J., Muetze A., Measurement of stator core magnetic degradation during the manufacturing process, IEEE Transactions on Industry Applications, vol. 48, no. 4, pp. 1344–1352 (2012), DOI:10.1109/TIA.2012.2199950.
  • [9] von Pfingsten G., Steentjes S., Thul A., Herold T., Hameyer K., Soft magnetic material degradation due to manufacturing process: A comparison of measurements and numerical simulations, Proceedings of International Conference on Electrical Machines and Systems, Hangzhou, China, pp. 2018–2024 (2014), DOI: 10.1109/ICEMS.2014.7013817.
  • [10] Bali M., De Gersem H., Muetze A., Finite-element modeling of magnetic material degradation due to punching, IEEE Transactions on Magnetics, vol. 50, no. 2, article sequence number 7018404 (2014), DOI: 10.1109/TMAG.2013.2283967.
  • [11] Shi W., Liu J., Li C., Effect of cutting techniques on the structure and magnetic properties of a high-grade non-oriented electrical steel, Journal of Wuhan University of Technology, vol. 29, no. 6, pp. 1246–1251 (2014), DOI: 10.1007/s11595-014-1076-3.
  • [12] Sundaria R., Nair D.G., Lehikoinen A., Arkkio A., Belahcen A., Effect of laser cutting on core losses in electrical machines – Measurements and modeling, IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7354–7363 (2020), DOI: 10.1109/TIE.2019.2942564.
  • [13] Saleem A., Alatawneh N., Rahman T., Lowther D.A., Chromik R.R., Effects of laser cutting on microstructure and magnetic properties of non-orientation electrical steel laminations, IEEE Transactions on Magnetics, vol. 56, no. 2, 6100609 (2020), DOI: 10.1109/TMAG.2020.3029256.
  • [14] Bali M., De Gersem H., Muetze A., Determination of original nondegraded and fully degraded magnetic characteristics of material subjected to laser cutting, IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4242–4251 (2017), DOI: 10.1109/TIA.2017.2696479.
  • [15] Elfgen S., Steentjes S., Bohmer S., Franck D., Hameyer K., Influences of material degradation due to laser cutting on the operating behavior of PMSM using a continuous local material model, IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 1978–1984 (2017), DOI:10.1109/TIA.2017.2665338.
  • [16] Schauerte B., Xiao X., Jansen K., Hameyer K., Consideration of the spatial orientation of magnetic field quantities and tensile mechanical stress in the Finite Element Analysis of electrical machines, Archives of Electrical Engineering, vol. 71, no. 4, pp. 949–961 (2022), DOI: 10.24425/aee.2022.142118.
  • [17] Martin F., Aydin U., Sundaria R., Rasilo P., Belahcen A., Arkkio A., Effect of punching the electrical sheets on optimal design of a permanent magnet synchronous motor, IEEE Transactions on Magnetics, vol. 54, iss. 3, article sequence number 8102004 (2018), DOI: 10.1109/TMAG.2017.2768399.
  • anescu V., Paltanea G., Ferrara E., Nemoianu I.V., Fiorillo F., Gavrila H., Influence of mechanical and water-jet cutting on the dynamic magnetic properties of NO Fe-Si steels, Journal of Magnetism and Magnetic Materials, vol. 499, article sequence number 166257 (2020), DOI: 10.1016/j.jmmm.2019.166257.
  • [19] Daem A., Sergeant P., Dupre L., Chadhuri S., Bliznuk V., Kestens L., Magnetic properties of silicon steel after plastic deformation, Materials, vol. 13, article sequence number 4361 (2020), DOI:10.3390/ma13194361.
  • [20] Xie S., Wu L., Tong Z., Chen H., Chen Z., Uchimoto T., Takagi T., Influence of plastic deformation and fatigue damage on electromagnetic properties of 304 austenic stainless steel, IEEE Transactions on Magnetics, vol. 54, no. 8, article sequence number 6201710 (2018), DOI: 10.1109/TMAG.2018.2819123.
  • [21] Cao H., Hao L., Yi J., Zhang X., Luo Z., Chen S., Li R., The influence of punching process on residual stress and magnetic domain structure of non-oriented silicon steel, Journal of Magnetism and Magnetic Materials, vol. 406, pp. 42–47 (2016), DOI: 10.1016/j.jmmm.2015.12.098.
  • [22] Singh D., Rasilo P., Martin F., Belehcen A., Arkkio A., Effect of mechanical stress on excess loss of electrical steel sheets, IEEE Transactions on Magnetics, vol. 51, no. 11, article sequence number 1001204 (2015), DOI: 10.1109/TMAG.2015.2449779.
  • [23] Gurbuz I.T., Martin F., Aydin U., Ali A.B., Chamosa M., Rasilo P., Belahcen A., Experimental characterization of the effect of uniaxial stress on magnetization and iron losses of electrical steel sheets cut by punching process, Journal of Magnetism and Magnetic Materials, vol. 549, article sequence number 168983 (2022), DOI: 10.1016/j.jmmm.2021.168983.
  • [24] Sundaria R., Leihkoinen A., Arkkio A., Hannukainen A., Higher-order finite element modeling of material degradation due to cutting, Proceedings of IEEE International Electric Machines and Drives Conference, Miami, USA, pp. 1–7 (2017), DOI: 10.1109/IEMDC.2017.8002278.
  • [25] Vandenbossche L., Jacobs S., Henrotte F., Hameyer K., Impact of cut edges on magnetization curves and iron losses in e-machines for automotive traction, Word Electric Vehicle Journal, vol. 4, no. 1, pp. 587–596 (2010), DOI: 10.3390/wevj4030587.
  • [26] Gmyrek Z., Impact of a punching process on the SyRM iron loss: SPICE model as an effective tool for iron loss modeling, Energies, vol. 14, pp. 1–19 (2021), DOI: 10.3390/en14217185.
  • [27] Gmyrek Z., Cavagnino A., Analytical model of the ferromagnetic properties in laminations damaged by cutting, Proceedings of IEEE Energy Conversion Congress and Exposition, Vancouver, Canada, pp. 4000–4007 (2021), DOI: 10.1109/ECCE47101.2021.9595736.
  • [28] Kucharska B., Measurement of Fe-Cr-Ni coatings density in XRD analysis, Inżynieria Materiałowa – Materials Engineering, vol. 28, no. 3–4, pp. 419–421 (2007).
  • [29] Kucharska B., Moraczyński O., Exhaust system piping made by hydroforming: relations between stresses, microstructure, mechanical properties and surface, Archives of Civil and Mechanical Engineering, vol. 20, no. 141 (2020), DOI: 10.1007/s43452-020-00142-x.
  • [30] Xiong X., Hu S., Dang N., Hu K., Effect of stress-relief annealing on microstructure, texture and hysteresis curve of mechanically cut non-oriented Fe-Si steel, Materials Characterization, vol. 132, pp. 239–247 (2017), DOI: 10.1016/j.matchar.2017.06.035.
  • [31] Naumoski H., Riedmüller B., Minkow A., Herr U., Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel, Journal of Magnetism and Magnetic Materials, vol. 392, pp. 126–133 (2015), DOI: 10.1016/j.jmmm.2015.05.031.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e69b8b12-8d9c-4052-b645-2df185f2edee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.