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Abstract 
 

Rank Controlled Differential Quadrature method is a numerical method that allows to approximate the partial derivatives that appears 

in partial differential equations. Those equations with proper geometrical, physical, initial and boundary conditions make mathematical 

models of physical process. The heat transfer process is governed by Fourier – Kirchhoff equation, which is parabolic Partial Differential 
Equation.  

In this paper authors present the steel plate cooling problem. At the beginning of the process plate is heated up to 450 C and is cooled 
to ambient temperature. The cooling of the plate is basic heat transfer problem. If the plates dimensions has proper proportions such problem 

may be described as one dimensional and solved exactly. The mathematical model and exact solution is given in the work. Authors apply 

the Rank Controlled Differential Quadrature to approximate derivatives in Fourier – Kirchhoff equation and in boundary conditions. After 
changing derivatives into quadrature formulation set of algebraic equations is obtained. Substituting thermo-physical parameters numerical 

model is obtained. The computer program was prepared to solve the problem numerically. Results of simulation are confronted with the 

exact ones. Error value at each time step as well as error value increase rate for examined numerical method is analyzed.  

 
Keywords: application of information technology to the foundry industry, solidification process, exact solution, Rank Controlled 

Differential Quadrature, numerical modelling. 

 

 
 

1. Introduction 
 

The heat transfer phenomenon is described by Fourier – 

Kirchhoff (F-K) Partial Differential Equation (PDE) with 

geometrical, physical, boundary and initial conditions [1-5]. In 

most cases it is impossible to find the analytical solution of this 
system, as the solving requires complex transformations which 

often leads to non-elementary functions. While modelling foundry 

processes numerical methods are used [4-8]. Basing on 

approximation methods coupled equations are being solved step by 

step. The obtained solution is laden with method error [1, 9, 10]. 

Developing of numerical methods aims on goal that is to define 

method that allows to find high accuracy solution in restricted time 
[10, 12]. 

Numerical methods are used for solving heat transfer problems 

that appears in industry. However in some cases it is possible to 

introduce mathematical model that describe simple heat transfer 
problem which can be solved exactly [11]. An example of such 

problem is cooling of infinite plate under assumption of constant 

thermo-physical parameters [1, 2]. Knowledge of exact solution 

allows one to analysis of numerical solution quality.  
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In this paper the application of a Rank Controlled Differential 

Quadrature (RCDQ) method for solving heat transfer problems is 

analyzed [10]. The RCDQ method is a numerical method for 
solving PDEs [9, 10]. This method come into being as the 

adaptation of Differential Quadrature method [12, 13] for solving 

heat transfer problems on dense, equidistant grids. The aim of this 

work is to apply the Rank Controlled Differential Quadrature 
method for solving an infinite steel plate cooling problem and 

confront numerical solution with the exact one.  

 

 

2. Mathematical and numerical model. 

Exact solution 
 

2.1. Mathematical model 
 
The problem of cooling infinite plate made of uniform material is 

one of the problems that can be solved exactly. Under assumption of 
infinite geometry of the plate problem may be described with one-
dimensional F-K equation [1, 2]. After this simplification the considered 
problem is symmetrical. In order to reduce the computation effort 
only half of the domain is taken under consideration. Mathematical 
model for this problem is: 
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(1) 

 

where:  [W m-1 K-1] denotes thermal conductivity, cp [J kg-1 K-1] 

specific heat,  [kg m-3] density, ̂  [W m-2 K-1] heat transfer 

coefficient,  ,xT  [K] function of temperature values, x [m] 

spatial variable,  [s] time variable, 2L [m] thickness of plate, 

ambinit TT ,  [K] initial and ambient temperature respectively. 

 
 

2.2. Exact solution 
 
Given model (eq. 1) under assumption of constant thermo-physical 

parameters can be solved exactly [2, 11]. The solution is function of 

temperature in selected point of spatial and time domain (x, ):  
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(2) 

 

where: Fo = 
2Lc p

  [K m-2] is Fourier’s number and n is nth 

solution of equation: 
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To find selected values of T in points (x, ) computer program was 
written. Procedures that allow to find solutions of equation 3, and 
approximate value of series that appears in equation 2 were implemented. 
The level of sum (eq. 2) accuracy may be controlled with selection of 
addends number. Their number was selected to be big enough to reach 

machine numerical representation of floating point numbers accuracy.  
 
 

2.3. The Rank Controlled Differential Quadrature 

Method 
 
The f function defined in [a, b] interval is considered, a set of N 

discrete coordinates xi: 
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 (4) 

 
is the grid introduced in the computational domain. 

The Rank Controlled Differential Quadrature is numerical method 
for spatial partial derivative of unknown field function f approximation 
as a linear weighted sum of the function values at grid points: 
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where:  in

n

x
x

f



  denotes the nth derivative of the function f with 

respect to spatial derivative x in point xi; )(

,

n

ji  are the quadrature 

weighting coefficients and )( jxf  are the function values at the xj. 

The RCDQ method is the modification of DQ method [10, 12]. 
Improving the DQ leads to increase computation accuracy, lowering the 
computational effort and overcome the high Lebesgue constant problem 
[9, 10] that may cause numerical instability.  

For each point, i, of the grid S (Eq. 4) the rank distribution 
representation is defined, RDQ(i). With this function the limitations for 
grid points indices S1, S2 are calculated as follows: 
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With such defined limits S1, S2 formulations for weighting 

coefficients in formula for approximation of first derivative (eq. 5) 
can be given as follows: 
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and for second derivative approximation weighted coefficients can be 
calculated with formulas: 

Further derivatives can be approximated recursively in the same way 
as it was done for DQ [12, 13]. 

The most important parameter of this method is rank distribution 
function. Setting it correctly leads to very quick and accurate method that 
can be applied to heat transfer problems. 

In this paper rank distribution grows in 10 nodes per side at the both 
sides near to boundary of the computational domain (eq. 6, 7). The lowest 
rank, Rmin, is at the domain boundary node. Rank grows to the centre to 
reach the highest rank, Rmax. In the remaining nodes in the centre of 
domain rank is set to be constant, equal to Rmax. 

 
 

2.4. Numerical model 
 
Numerical approximation of infinite steel plate problem (eq. 1) with 

RCDQ method was performed. The thermo-physical data after [1] is 
gathered in Table 1. 

 
Table 1. Thermo-physical, initial, boundary and geometry parameters of 
chosen steel [1] 

Parameter Value  

 35 W m-1 K-1 

cp 690 J kg-1 K-1 

 7500 kg m-3 

̂  250 W m-2 K-1 

Tinit 450 C 

Tamb 23 C 

L 0.1 m 

 
Numerical model base on the mathematical model with defined 

thermo-physical, initial, boundary and geometric parameters (Table 1). 
Next stage is to introduce set of discrete points – grid points. In presented 
paper N = 300 nodes equidistant grid (eq. 3) was chosen. On the grid 
RCDQ method coefficients were calculated. Time domain was divided 

into equidistant time steps s. For such discretization 
parameters set of algebraic equations define the numerical model: 
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After substituting parameters gathered in Table 1, set of algebraic 
equations is obtained. Their solution is matrix of temperature values at 
discrete grid points at each layer of time. 

 
 

3. Results and discussion 
 
Basing on the numerical model (eq. 10, Table 1) computer program 

was prepared. Results of numerical simulations are shown in this chapter. 
In the figure 1 comparison of numerical and exact solution of infinite 

steel plate cooling problem is shown. It can be observed that difference 
between those two solutions is very small. This confirm that RCDQ 
method is numerical method of very high accuracy. 

 
Fig. 1. Comparison of numerical and exact solution of infinite 

plate cooling problem, Rmin = 5, Rmax = 11 
as numerical method was chosen. 

 
Further analyze of the method accuracy was performed on the base 

of obtained numerical data. Knowing the accurate solution percentage 
relative error may be introduced: 
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(11) 

 
where i denotes the grid node number. 

 
For each time step average value of percentage relative error was 

calculated and divided by the nodes number. In result mean relative 
percentage error was found at each computation step, which may be 
observed in figure 2. The observed parameter shows the dynamic of error 
growth during simulation. This curve is affected by the summation of 
errors committed at each time step of the computations.   

 

 
Fig. 2. Mean relative percentage error increase during numerical 

simulation of infinite steel plate cooling. Error values 
are shown in calculated moments of time 
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Rate of error growth may be determine on the base of the mean 
relative percentage error by differentiate with respect to time.  

 
Fig. 3. Rate of mean relative percentage error increase with respect 

to calculated time of a process with actual calculated  
temperature at the centre of steel plate 

 
In the figure 3 the increase rate of mean relative percentage error can 

be seen. It may be observed that at the early stage of simulation rate of 
error change is very small, but then it starts to accelerate. This process 
ends as the temperature drops in the plate is stable (around 50 s). Than as 
temperature decrease is stable error change rate drops quite fast until it 
reaches (150 s) stable value around 3 – 4 10-6 s-1. Since this moment rate 
of mean relative error change still decrease, but very slowly. 

At the early stage inertia of numerical method may cause so fast error 
increase. Boundary condition at the interface that connects two domains 
that differs with temperatures highly produces high errors also. This 
problem refers to all numerical methods. Later when temperature 
distribution in both domains is smooth less numerical approximation 
errors appears. Observed error is connected only to numerical 
approximation.   

 
 

4. Conclusions 
 
Knowledge of exact solution of problems described with PDEs 

allows to test quality of numerical solution. This procedure is especially 
important for the newly developed methods. Experimental results may 
be affected by processes that wasn’t taken into account in mathematical 
model or may be laden with measurement errors. Exact solution gives 
values which should be reached by the numerical one. 

The RCDQ method can be used to solving the heat transfer 
problems. The numerical solution given by the simulation that base on 
the RCDQ method approximation is of high accuracy. 

Numerical approximation error increase during simulation. This may 
be caused by summing errors that appear at each time step. Errors that 
cause the error increase have different origins. It is effect of dynamic 
change of simulation condition during solving. 

Whenever it is possible it is important to use relative error as it shows 
the fraction of the error that is included in numerical solution. 

Because of its accuracy the Rank Controlled Differential Quadrature 
method may be used to solve more complicated foundry problems that 
include solidification.
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