Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Flotation separation of galena and chalcopyrite is always a difficult problem in mineral processing. In this paper, the selective preoxidation of galena and chalcopyrite with sulfuric acid was developed, and then the two minerals were completely separated by flotation. The surface oxidation mechanism of galena and chalcopyrite with sulfuric acid was analyzed by Fourier transform infrared spectroscopy (FT-IR) and Atomic Force Microscopy (AFM), and the results showed that hydrophilic oxide film was formed on the galena surface, while the surface of chalcopyrite is still hydrophobic sulfide film, which led to the separation of the two minerals by flotation. In addition, the Response Surface Methodology (RSM) was used to analyze the influence of main preoxidation parameters on the flotation separation of copper-lead concentrate, and the parameters were further optimized, as follows: sulfuric acid concentration of 5.3 mol/L, oxidation temperature of 101.8 °C and time of 48.3 min. The mixed concentrate containing Cu 11.57% and Pb 16.75% was preoxidized under the above conditions, and the flotation separation verification results showed that Cu concentrate with Cu grade of 18.09% and recovery of 95.41%, and Pb concentrate with Pb grade of 44.96% and recovery of 95.94% was obtained respectively. This paper provides a new method of preoxidation combined flotation to achieve high-efficiency separation of copper-lead mixed concentrate.
Rocznik
Tom
Strony
art. no. 163253
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, China
Bibliografia
- ALI R., ALI D., 2016. Electrochemical Characterization of Natural Chalcopyrite Dissolution in Sulfuric Acid Solution in Presence of Peroxydisulfate. Electrochimica Acta. 212, 921-928.
- BAI R., WEI Z., PENG R., WANG H., 2021. Research status and progress of flotation separation of copper-lead sulfide minerals. Conservation and Utilization of Mineral Resources. 41, 74-79.
- CHEN, H., CUI Y., TONG X., 2016. Research status and development of copper and lead separation in the sulfide ores. Mining and Metallurgy. 25, 13-16.
- CHERNYSHOVA I., ANDREEV S., 1997. Spectroscopic study of galena surface oxidation in aqueous solutions I. Identification of surface species by XPS and ATR/FTIR spectroscopy. Applied Surface Science. 108, 225-236.
- CASES J., DONATO P., 1991. FTIR analysis of sulphide mineral surfaces before and after collection: galena. International Journal of Mineral Processing. 33, 49-65.
- DUAN S., YANG S., JIANG Y., 2022. Experimental study on separation bulk concentrate containing gold, copper and lead. Nonferrous Metals (Mineral Processing Section). 5, 100-106+136.
- FEN J., CUI Y., WANG D., HU C., 2021. Research of the replacement of dichromate with depressants mixture in the separation of copper-lead sulfides by flotation. Separation and Purification Technology. 278, 119330.
- GHAHREMANINEZHAD A., DIXON D., Asselin E., 2013. Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochimica Acta. 87, 97-112.
- JIN Y., XIE H., ZHANG P., CHEN J., ZENG P., FENG D., LIU D., 2022. Optimization of surface modification parameters of galena based on response surface methodology. Nonferrous Metals Engineering. 12, 117-124.
- JIN Y., XIE H., ZHANG P., LIU Y., RAO B., FENG D., JI C., 2022. A study on characteristics and mechanism of surface passivation of galena in the presence of sulfuric acid. Journal of Minerals. 42, 343-350.
- KE B., CHEN J., 2022. Influence of galvanic interaction between chalcopyrite and galena on electrochemical and flotation behaviour of chalcopyrite. Applied Surface Science. 573, 151475.
- KLAUBER C. 2008. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. International Journal of Mineral Processing. 86, 1-17.
- LAI H., LIU Q., DENG J., WEN S., LIU Z., 2020. Surface chemistry study of Cu-Pb sulfide ore using ToF-SIMS and multivariate analysis. Applied Surface Science. 518, 146270.
- LEIRO J., TORHOLA M., LAAJALEHTO K., 2017. The AFM method in studies of muscovite mica and galena surfaces. Journal of Physics and Chemistry of Solids. 100, 40-44.
- LIANG Z., LI G., WEI Z., WU W., HUANG X., WANG J., CUI L., NI X., ZHONG S., 2021. Replacing Dichromate with Polysaccharide Depressant in Cu-Pb Separation: Lab Bench Tests and Plant Trials in Zijin Mining. Mining, Metallurgy & Exploration. 38, 5.
- LIU M., ZHANG C., HU B., SUN Z., XU Q., WEN J., XIAO J., DONG Y., GAN M., SUN W., ZHU J., CHEN D., 2020. Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate. Applied Surface Science. 507, 145042.
- LUTTRELL G., YOON R., 1984. The collectorless flotation of chalcopyrite ores using sodium sulfide. International Journal of Mineral Processing. 13, 271-283.
- MA Y., HAN Y., ZHU Y., LI Y., LIU H., 2016. Flotation behaviors and mechanisms of chalcopyrite and galena after cyanide treatmen. Transactions of Nonferrous Metals Society of China 26, 3245-3252.
- NAGARAJ D., FARINATO R., 2016. Evolution of flotation chemistry and chemicals: A century of innovations and the lingering challenges. Minerals Engineering. 96, 2–14.
- OCTOBER L., CORIN K., MANONO M., SCHREITHOFER N., WIESE J., 2020. A fundamental study considering specific ion effects on the attachment of sulfide minerals to air bubbles. Minerals Engineering. 151, 106313.
- PATRA P., NATARAJAN K., 2008. Microbially-induced separation of chalcopyrite and galena. Minerals Engineering. 21, 691-698.
- QIU T., YAN H., LI J., LIU Q., AI G., 2018. Response surface method for optimization of leaching of a low-grade ionic rare earth ore. Powder Technology. 330, 330-338.
- RAHDAR S., PAL K., MOHAMMADI L., RAHDAR A., GOHARNIYA Y., SAMANI S., KYZAS G., 2021. Response surface methodology for the removal of nitrate ions by adsorption onto copper oxide nanoparticles. Journal of Molecular Structure. 1231, 129686.
- SOMAYEH R., PAL K., MOHAMMADI L., RAHDAR A., GOHARNIYA Y., SAMANI S., KYZAS G., 2021. Response surface methodology for the removal of nitrate ions by adsorption onto copper oxide nanoparticles. Journal of Molecular Structure. 1231, 129686.
- SRDJAN M., 2007. 15-Flotation of Copper–Lead–Zinc Ores. Elsevier. 367-400.
- SUBRAMANIAN S., SANTHIYA D., NATARAJAN K., 2003. Surface modification studies on sulphide minerals using bioreagents. International Journal of Mineral Processing. 72, 175-188.
- SUN W., DAI S., ZHANG H., CHEN Y., YU X., LI P., LIU W., 2022. Selective flotation of chalcopyrite from galena using a novel collector benzoic diethylcarbamothioic thioanhydride: An experimental and theoretical investigation. Journal of Molecular Liquids. 365, 120027.
- SU C., LIU D., SHEN P., CAI J., YANG S., 2020. Research progress on electrochemical characteristics and flotation behavior of chalcopyrite and galena. Nonferrous Metals Engineering. 10, 79-87.
- WANG X., QIN W., JIAO F., LIU R., WANG D., 2019. Inhibition of galena flotation by humic acid: Identification of the adsorption site for humic acid on moderately oxidized galena surface. Minerals Engineering. 137, 102-107.
- WANG Y., XIONG W., ZHANG X., LU L., ZHU Y., 2021. A new synthetic polymer depressant PADEMA for Cu-Pb separation and its interfacial adsorption mechanism on galena surface. Applied Surface Science. 569, 151062.
- XIE H., WU J., TIAN X., XIAO W., LIU R., GAO L., TONG X., 2019. Selective flotation separation of copper-zinc-sulfur bulk concentrate. Journal of Mineralogy. 39, 1-6.
- XIE H., LIU Y., RAO B., WU J., GAO L., CHEN L., TIAN X., 2021. Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper-lead sulfide ore without collector and inhibitor. Separation and Purification Technology. 267, 118621.
- XIE H., JIN Y., ZHANG P., LIU Y., GAO L., FENG Q., LIU D., 2022. Surface modification mechanism of galena with H2SO4 and its effect on flotation separation performance. Applied Surface Science. 579, 152129.
- YANG S., LIU D., ZHUANG G., CAI J., SU C., LI J., 2021. Optimization of leaching process of fine copper oxide by response surface methodology. China Mining. 30, 128-133.
- ZHANG P., XIE H., JIN Y., LIU Y., TANG D., FENG D., 2022. Study on new technology of high efficient separation of copper-lead sulfide mixed concentrate. Nonferrous Metals Engineering. 12, 96 -103.
- ZHANG X., ZHU Y., ZHENG G., HAN L., MCFADZEAN B., QIAN Z., PIAO Y., O'CONNOR C., 2019. An investigation into the selective separation and adsorption mechanism of a macromolecular depressant in the galena-chalcopyrite system. Minerals Engineering. 134, 291-299.
- ZHANG P., XIE H., JIN Y., CHEN J., ZENG P., LIU D., TONG X., 2022. Optimization analysis of a new surface efficient separation process for copper-lead sulfide ore by Response surface methodology. Journal of Kunming University of Science and Technology (Natural Science). 47, 40-50.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e698ba79-b4be-49be-a44b-62364cda11c0