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INTRODUCTION 

In the last decades, hydraulic systems are 
extensively employed in both industrial and mo-
bile applications due to their solidity, superior 
power-to-mass ratio, and rapid feedback times. 
Recent research on hydraulic systems has led 
to advancements in parametric identification, 
trajectory tracking, fault detection, and state es-
timation to enhance control performance [1–5]. 
In general, valve-controlled hydraulic systems 
are commonly used because of their high pow-
er-to-size ratio. However, they suffer from low 
energy efficiency caused by energy dissipation 
through pump bypass leaks and throttle losses 
at control valves. These systems also present 
challenges such as environmental concerns from 
fluid leaks, high maintenance demands, sub-
stantial weight, and spatial constraints during 
installation [6-8]. To address these issues, vari-
ous advancements have been made in hydraulic 

engineering. A model for a hydraulic system 
featuring an asymmetric cylinder driven by a 
directional valve, incorporating a variable bulk 
modulus, was developed to addresses the posi-
tion control [9]. A friction model that accounts 
for the friction-velocity relationship, consisting 
of Coulomb-Stribeck friction, was introduced 
to perform force tracking control of an electro-
hydraulic actuator (EHA) [10]. Internal leakage 
within the servo valve and actuator was empha-
sized in the application of a fuzzy logic position 
control [11], while the position control of an 
electro-hydraulic servo system characterized by 
a asymmetric and large dead zone was examined 
considered factors such as time variability, dead 
zone, time lag, and saturation nonlinearity in a 
servo hydraulic press [12]. These studies provide 
insights into addressing nonlinearities in hydrau-
lic system modelling. One other promising alter-
native gaining attention is EHA systems. EHA 
systems, as fundamental parts, and components, 
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have been used in numerous types of equipment, 
including construction machinery, agricultural 
machines, and airplanes [13, 14]. These applica-
tions often require high power to perform tasks 
such as lifting heavy weights or moving mate-
rials. The energy for these systems is generally 
produced by a central source, often an internal 
combustion engine or a high-capacity electric 
motor. Fluid power systems enable the efficient 
transmission of energy through hydraulic lines to 
linear or rotary actuators. Concurrently, concerns 
about energy conservation in hydraulic systems 
have risen with the increased use of heavy equip-
ment [15]. EHA systems frequently run continu-
ously and deliver high power to manage heavy 
loads, leading to substantial energy usage and 
exhaust emissions [16]. Thus, even a minor en-
hancement in hydraulic system efficiency can 
greatly influence the machine’s overall energy 
efficiency. Each EHA system converts power 
from high-speed performance of an electric mo-
tor to the high-force output of a hydraulic actua-
tor. These systems usually include a reservoir, 
valves, an electric motor, a bidirectional pump, 
and an end-effector (such as a linear or rotary 
actuator) directly driven by the pump. EHA sys-
tems provide a more streamlined, eco-friendly, 
and energy-efficient means of delivering high 
force, thanks to their superior stiffness compared 
to valve-controlled hydraulic systems. Achieving 
precise control of EHAs is challenging due to in-
herent nonlinearities and uncertainties. Accurate 
modelling of the controlled plant is fundamen-
tal for position control. However, constructing 
a precise mathematical model for EHA systems 
is difficult because of their inherent nonlinearity 
and significant uncertainties [17, 18]. These chal-
lenges arise from factors such as flow area dead 
zones, friction, leakage and fluid compressibility, 
and the intricate pressure-flow characteristics of 
control valves. These nonlinearities result from 
fluid dynamics and hardware interactions, while 
uncertainties stem from friction and variations 
in fluid temperature and pressure. Consequently, 
precision control in EHAs has become a major 
focus of research.

To manage the complexities of controlling 
nonlinear systems, various control methodolo-
gies have been developed. The conventional 
proportional-integral-derivative (PID) controller 
struggles to perform well across different load 
conditions due to its fixed gains. Despite its sim-
plicity and robust operation, enhancements to 

the PID algorithm are needed to optimize system 
response. As a result, there is growing interest 
in integrating innovative control methods with 
traditional approaches to improve performance. 
Several hybrid control strategies have been ex-
plored, with PID controller combinations be-
ing common [19–21]. For instance, integrating 
a conventional PID controller with an adaptive 
or robust controller, or combining a robust PID 
model with an output feedback controller for net-
worked control systems, for example, those gov-
erning DC motors, has shown effective in simu-
lation studies. Optimal tuning of PID controllers 
for velocity and position control in hydraulic 
systems has led to satisfactory system perfor-
mance. Various adaptive PID controllers have 
been developed, such as intelligent PID control, 
self-tuning PID controllers [22], and online-tun-
ing PID controllers [23], among others. Combin-
ing a tuning mechanism with PID control offers 
considerable potential in control system design, 
leveraging the simplicity of PID control along-
side its capacity to learn, adapt, and manage non-
linearity. Moreover, significant improvements in 
control performance can be realized by integrat-
ing feedforward and feedback control, particu-
larly when large disturbances can be measured 
in advance before they affect the process output. 
Ideally, feedforward control can decouple the 
influence of these measured disturbances on the 
output. However, its application requires a cost-
benefit analysis, as the benefits of disturbance 
rejection must be weighed against the manu-
facturing and maintenance costs. Additionally, 
feedforward control relies on knowledge of the 
system’s mathematical model, the availability of 
external control signals, and an understanding of 
how the system output responds to load changes. 
Consequently, feedforward control does not rely 
solely on error correction; it also requires a deep 
understanding of the process model and accurate 
measurement of the disturbances impacting the 
system [24]. Additionally, integrating traditional 
PID control with fuzzy control algorithms has 
emerged as a promising approach to enhance 
controller effectiveness and system performance 
further [25–27]. Fuzzy logic control techniques 
have been adopted for designing control sys-
tems, leveraging linguistic information, particu-
larly useful in velocity control systems for hy-
draulics due to fuzzy control’s model-free nature 
and robustness.
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Implementing the fuzzy logic model involves 
specific challenges, notably the requirement for 
intricate learning mechanisms or the trial-and-
error construction of performance decision tables 
[28]. A significant hurdle is the substantial num-
ber of fuzzy logic rules required, complicating 
the evaluation. The effectiveness of the system 
is contingent on the time invested in implemen-
tation and the designer’s experience. To address 
these complexities, methods integrating sliding 
mode control into fuzzy control systems have 
been developed. Sliding mode control, known for 
its effectiveness in managing nonlinear systems 
and reducing model uncertainty, is well-suited for 
addressing the inherent nonlinearity in hydrau-
lic systems. Research has demonstrated that in-
tegrating sliding mode control with fuzzy logic 
techniques can enhance performance and robust-
ness while reducing the number of required fuzzy 
rules. One notable advantage is its ability to func-
tion effectively with fewer rules compared to tra-
ditional fuzzy control methods, coupled with im-
proved robustness against parameter variations. 
However, similar to conventional fuzzy control 
systems, designing rules for fuzzy sliding mode 
control necessitates prior tuning through trial-
and-error, which can be time-consuming.

In response to these challenges, research has 
focused on developing adaptive fuzzy control-
lers using the Lyapunov synthesis approach [29]. 
These controllers automatically adjust fuzzy rules 
to achieve satisfactory system responses. Howev-
er, they require prior knowledge of the plant during 
the design phase, and the extensive number of rules 
may limit their applicability in certain scenarios. 
Grey model has emerged as a preferred solution, 
facilitating the collection of system process and 
disturbance data [30, 31]. Grey prediction meth-
odologies can accurately forecast system outputs 
without requiring a comprehensive understand-
ing of the system’s mathematical model. The grey 
prediction framework is particularly suited for 
systems with unknown parameters and has been 
widely applied in various engineering challenges.

Therefore, a tailored control solution for 
the position control of EHA systems is neces-
sary. This study proposes a predictor-integrated 
adaptive controller, termed the adaptive sliding 
mode-PID (SMCPID) based on smart grey mod-
el (SGP) control approach, named as ASSG, to 
mitigate EHA system nonlinearities and man-
age variations in frequency of desired trajec-
tory and load for precise position control. The 

proposed approach combines adaptive SMCPID 
methods to reduce reaching time and oscillation 
through high sliding surface gains. An online 
fuzzy tuning method adjusts sliding surface 
gains to mimic those of a PID controller under 
robust checking conditions. This controller in-
corporates an adaptive fuzzy control scheme, a 
SMCPID reaching controller, and a smart grey 
model adapted from the standard grey predic-
tion model for a first-order single variable. This 
smart grey model predicts the system’s future 
performance, ensuring the stability of the con-
trol parameters within the adaptive controller 
through rigorous Lyapunov analysis. Moreover, 
this control strategy effectively addresses para-
metric uncertainties arising from model varia-
tions and disturbances, making it suitable for 
systems characterized by such uncertainties. 

CONTROL ALGORITHM DESIGN

As outlined above, the ASSG is built utilizing 
an adaptive sliding mode PID (ASPID) controller 
incorporating a smart prediction model (SGP). In 
this controller as depicted in Figure 1, the ASPID 
model is designed to direct the hydraulic system 
towards predefined trajectories. In addition, a ro-
bust verification conditions-based learning mech-
anism is incorporated with the PID controller to 
continuously adjust their parameters in real-time, 
of which the goal is to minimize the control errors. 
In the meantime, the SGP, endowed with self-tun-
ing capabilities for predictor step size, serves two 
primary functions: first, it forecasts the system re-
sponse in next future to proactively optimize the 
control factors, and second, it generates a com-
pensatory control input in response to the pertur-
bations of the system, thereby enhancing overall 
control performance.

EHA mathematical model

Considering the EHA system depicted in Fig-
ure 2, the piston dynamics can be represented by:

	 mӱ = PHAH - PR AR - F	 (1)

where: 	m, k, c represent the equivalent mass, 
stiffness, and damping, respectively; y is 
the displacement of the system; PH, PR 
are the pressures in the two chambers; 
AH, AR are the respective actuating ar-
eas; and F is the external load force.
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Figure 1. The structure of ASSG control model 

 
 

 
Figure 2. The structure of the EHA system 

 
 

Assuming no external leakage, the dynamics of the cylinder oil flow can be expressed as: 
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 = − − − +

 = + + −
 −

  (2) 

where: Ct is the internal leakage coefficient of the cylinder, e is the effective bulk modulus of the 
hydraulic fluid, and V01, V02 represent the initial total control volumes of the two chambers (including 
pipeline and initial cylinder chamber volumes). QH and QR denote the flow rates into the H chamber 
(cylinder end) and R chamber (rod end), respectively.  

The flow rates for both chambers are calculated as: 

 1 3

2 4

H PH v v

R PR v v

Q Q Q Q
Q Q Q Q

= + −
 = + −

  (3) 
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where: PH PR pumpQ Q Q= − =  represents the flow rate supplied by the pump: 

 ( )pump leakage H RQ D k P P= − −   (4) 

where: kleakage denotes the leakage constant, D represents the pump displacement, and  is the input 
drive speed from the servo system. Assuming the pressure in the oil tank is negligible (Ptank = 0), the 
terms Qv1, Qv2, Qv3, and Qv4 correspond to the flow rates through valves v1, v2, v3, and v4, respectively.  

ASPID control model design 
Let’s start by analyzing the following general system: 

 
1 2

2 1 2

1

( ) ( )

( ) ( ( ), ( ), ( ))
( ) ( )

t t

t F t t u t
t t

 

  
 

 =


=
 =

  (5) 

where:  = (1, 2,…, n)T n represents the the system’s input vector, the control signal depicted by u 
 m, F: nm→ n , and r  . Let ( )t be the difference between the reference signal d and the 
system response , 

 ( ) ( ) ( )dt t t  = −  (6) 

Define the reference signal as indicated below: 
 1 0( ) ( ) ( ) ( )r dt t c t c t   = + +    (7) 

where: the coefficients c1 and c0 are determined to ensure that the roots of s2 + c1s + c0 = 0 within the 
left-half of the complex plane. The following manner defines the sliding mode surface as: 

 2( ) ( ) ( )rt t t  = −       (8) 
When the sliding mode takes place, the approaches zero, indicating the control error tends to zero 

when the time approaches infinity. Combining Equations 6–8, we obtain the following Equations: 

 0 1( ) ( ) ( ) ( )t t c t dt c t   = + +     (9) 

 0 1( ) ( ) ( ) ( )t t c t c t   = + +      (10) 

Here, the reference signal allows the control model to increase the sliding surface level, enabling 
the achievement of an integral sliding surface that ensures stability. Moreover, the sliding surface 
converges to zero, thereby improving the control efficiency. The Lyapunov function can be defined as 
the following: 

 2 2
2

1( ) ( ) ( ( ) ( ))
2 rV t t t t  = = −  (11) 

and its derivative:  

 𝑉̇𝑉(𝑡𝑡) = 𝜗̇𝜗(𝑡𝑡)𝜗𝜗(𝑡𝑡) = (𝜁𝜁̇(𝑡𝑡) + 𝑐𝑐0 ∫ 𝜁𝜁(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑐𝑐1𝜁𝜁(𝑡𝑡))(𝜁𝜁̈(𝑡𝑡) + 𝑐𝑐0𝜁𝜁(𝑡𝑡) + 𝑐𝑐1𝜁𝜁̇(𝑡𝑡)) (12) 

The terms ( ), ( )t t  and their integrals/derivatives form a quadratic expression in ( )t and its 
derivatives. Typically, if damping is present (i.e., the system has terms proportional to ( )t  or its 
derivatives, like the c0 and c1 terms), these quadratic terms lead to non-positive derivatives for Lyapunov 
functions. The term 0 1( ) ( ) ( )t c t dt c t  + + represents a combination of the error, its rate of change, 

and an integrated term. These typically contribute to stabilizing the system (i.e., driving ( )t to zero). 
The second term 0 1( ) ( ) ( )t c t c t  + + adds further dynamics that should also help dampen the system. 

For ( )V t  to be non-positive, constants c0 and c1 need to be carefully chosen. If both c0 and c1 are 
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positive, they contribute damping to the system and help ensure that the error ( )t  (or ( )t ) decreases 
over time. Hence, the error ( ) ( )t t =  tends to zero, ensuring stability. To attain system stable, the 
control signal output is produced to satisfy the equation bellow: 

 𝜗̇𝜗(𝑡𝑡) = −𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗(𝑡𝑡))     (13) 

where: 

 
1; ( ) 0

sgn( ( )) 0 ; ( ) 0
1 ; ( ) 0

t
t t

t


 



− 
= =
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  (14) 

In this context, the control signal is divided into two components: 
 ( ) ( ) ( )sw equ t u t u t= +   (15) 

In Equation 15, the sliding mode control output, ( )( ) ( )swu t csign t = , transitions the system to 
the sliding surface, while  represents the input factor. The control output at the equivalent point, ueq, 
is obtained as the following: 

( ) ( )( ) ( ) ( ) ( ) ( )eq r PID P I D
d tu t t F t u k t k t dt k

dt
   = −  = + +  (16) 

where: the PID model generates the output to counteract noise and disturbances. To optimize the PID 
controller parameters, the objective function is selected as bellow: 

 𝑉𝑉𝑜𝑜(𝑡𝑡) = 0.5(𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡) − 𝑢𝑢𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡))
2 = 0.5𝜁𝜁𝑜𝑜2(𝑡𝑡)  (17) 

wherein, the PID controller parameters optimization adhere to the gradient descent technique: 

 ( ) ( ) ( )1 1
( ) ( ) ( )o

P P o P o
P

d tk t t k t k t t t
dk
    + = + = +   (18) 

 ( ) ( ) ( )2 2
( )( ) ( ) ( )o

I I o I o
I

d tk t t k t t k k t t dt
dk
    + = + = +    (19) 
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( ) ( )( ) ( )o

D D o D o
D

d t d tk t t k t t k t t
dk dt
    + = + = +   (20) 

In this control structure, if the output of the PID model ( ) ( )PID equ t u t→ , 0 ( ) 0t → then 

( ) 0t → . Consequently, the parameters of the controller is updated by the following: 
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To determine the sliding control gain, we substitute the value of with the saturation value as follows: 

 ( )
1 ; 1

1 ; 1

;
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others
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  (22) 
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where:   represents the width of the boundary layer. Then, the sliding mode control output is obtained 
as bellow: 

 max max( ) ( )swu ksat k sat 
 = =   (23) 

To ensure the stability of the control approach, the robust adjustment algorithms for the gains are 
implemented. Robust control methodology encompasses two main objectives: ensuring closed-loop 
equilibrium, validated with adequate allowances, and achieving suppression of closed-loop 
disturbances. To realize these objectives, the parameters of the PID controller are determined according 
to robust control criteria. To stabilize the control system, it is crucial to uphold a gain margin of around 
3 dB for the feedback control system. 

SGP model implementation 

In this control algorithm, the SGP model serving two main functions: to predict the system output 
to guide the ASPID model and to compensate for system feedback deviations caused by environmental 
noise and disturbances during subsequent operation. The grey prediction method utilized by the 
GM1(1,1) model follows these steps. Firstly, the n output data (n ≥ 4) are necessary to approximate a 
system which can be obtained as the following: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
1 1 1 1{ 1 , 2 ,..., };GM GM k GM k GM kt n t n t   = − + − +   (24) 

The next step of the GM1(1,1) modelling procedure involves calculating ( )1 from ( )0 using the 
accumulated generating operation: 

 ( ) ( ) ( ) ( )1 0
1 1

1
;( : 1, - 2,..., )

kt

GM k GM k
i

t i t t n t n t 
=

= − + +   (25) 

Then, a adjacent neighbour of ( )1 from ( )1  can be produced by the mean generating operation as bellow: 

 ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1
1 1 1

1 1
2GM k GM k GM kt t t  = + −   (26) 

The next step of the modelling process involves obtaining the differential equation of the first grey 
model, GM1(1,1) as the following: 

 ( ) ( ) ( ) ( )0 1
1 1 1 1GM k GM kt t   + =   (27) 

where: the least squares method is used to establish the parameter 1 1[ , ]  . Particularly, the least squares 
method can be executed as follows: 

 ( ) 11
1 1 1 1 1
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ˆ T TD D D E
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= = 
 

  (28) 
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−   
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  (29) 

The final step of the process involves obtaining the prediction model: 

 ( ) ( ) ( ) ( ) k1 1 -1 1
1 1

1 1

ˆ 1 1 e at
GM k GMt   

 
 

+ = − + 
 

  (30) 

 ( ) ( ) ( ) ( ) ( ) ( )0 1 1
1 1 1

ˆ ˆ ˆ 1GM GM GMt t t     + = + − + −   (31) 
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The performance of a prediction model employing a grey predictor depends directly on the 
predictor step. At the beginning, the SGP design includes a grey predictor with a fixed step size. 
Nonetheless, it’s clear that a smaller step size speeds up the system actuation but results in greater 
oscillation and/or overshoot. In contrast, the overshoot or oscillation can be reduced by a larger predictor 
step size, but it leads to the increase the system’s rise time. Therefore, an adaptive predictor step size is 
suitable to mitigate these limitations. Additionally, an evaluation factor is defined to determine the 
current step extent. This considers both the prior and the next steps to ascertain if the predicted value is 
sufficient to enhance the performance of the control approach. The step size of the prediction model is 
derived as the following Equation: 

 ( )( 1) ( 1) ( ) (1 ( 1)) 1k k k k AS kt t t t t    + = + + − + +   (32) 

Here, two fuzzy sets are employed to produce the AS and γ(t) in Equation 32. The triangle 
membership functions (TMFs) is employed in the adaptive prediction step (APS) fuzzy. The inputs are 
depicted by seven TMFs (LN, MN, SN, Z, SP, MP, and BP) mean (Large, Medium, Small Negative, 
Zero, Small, Medium, and Big Positive). On the other hand, five TMFs represent the output of the fuzzy 
set as: ES, S, M, L, and EL (mean Extra Small, Small, Medium, Large”, and Extra Large). Figure 3 
illustrates the shapes and positions of the membership functions of the input and output. The fuzzy rules 
for the APS are obtained in Table 1 utilizing the IF-THEN configuration based on the aforementioned 
fuzzy sets of the input and output variables. 
 

 
Figure 3. Fuzzy step size model, (a) MFs of fuzzy inputs (b) MFs of fuzzy output 

Table 1. Fuzzy rule table for the APS 

Step size 
Input 2 

LN MN SN Z SP MP LB 

Input 1 

LN EL EL L M ES ES ES 

MN EL L M S ES ES ES 

SN EL L M S S S M 

Z EL L M M L L EL 

SP M S S S L EL EL 

MP ES ES S S L EL EL 

LP ES ES ES S EL EL EL 
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Besides, there are two inputs and one output in the adaptive evaluation factor (AEF). The inputs are 
depicted by three TMFs: N, Z, and P (mean Negative, Zero and Positive). On the other hand, four 
membership functions are employed as: ES, S, M and L (mean Extra Small, Small”, Medium, and Large) 
for the output. Figure 4 displays the shapes and positions of the input and output membership functions. 
Using the aforementioned fuzzy sets of input and output variables, the fuzzy rules for the AEF are 
documented in Table 2 utilizing the IF-THEN format. 

 
Figure 4. Fuzzy step size (a) MFs of adaptive evaluation factor inputs (b) MFs of fuzzy output 

Table 2. Fuzzy rule table for the AEF 

Evaluating factor 
Input 2 

N Z P 

Input 1 

N ES S ES 

Z M L M 

P ES S ES 

 
The purpose of employing the second grey model, GM2(1,1), is to estimate the impact of the noise 

and disturbances in the subsequent step, aiming to generate an appropriate compensatory signal. 
Consequently, the construction process of the prediction model GM2(1,1) closely resembles that of the 
first grey prediction model, with the distinction lying in the input used. In this design, the gathered input 
data reflects the response to disturbances and noise of the system, denoted as: 
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where: 
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The mean generating operation is applied 
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where: the least squares method is used to establish the parameter 2 2[ , ]  . Particularly, the least 
squares method can be executed as follows: 
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The final step of the process involves obtaining the prediction model: 
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By employing the GM2(1,1), the output response to the perturbations and noises of the system in 
the next step can be obtained. Consequently, the additive signal output of the controller for the coming 
disturbance is denoted as: 

 ( ) ( )2
0ˆ ˆ( 1) ( 1) 1 ;GMSGu t t k n  +   + =  +   (41) 

where: kSG represents an additive gain. 
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SYSTEM EVALUATION SETUP

In order to implement and evaluate the de-
signed control approach, a system integrating an 
EHA is set up utilizing co-simulation platform 
based on Amesim and Matlab/Simulink with an 
ODE solver. Figure 5 depicts the structure of 
the evaluate system. In this study, the particular 
EHA is implemented using the Amesim software, 
consisting of a pump, a cylinder, and additional 
valve system. The specification of the system is 
presented in Table 3. Here, the motor speed con-
trolled the translation of the hydraulic actuator. 
Additionally, various loads are applied to the 
system using a pneumatic cylinder connected in 
series to the hydraulic cylinder rod, with a mass 
capable of adjusting the friction parameter. Fur-
thermore, a linear scale monitored the motion of 
the actuators, while a force transducer is used to 
measure the force generated by the system. As a 
result, the designed control approach is imple-
mented in the Matlab/Simulink environment to 
evaluate the controller’s performance.

VALIDATION RESULTS 

Based on the above setup, the efficiency 
of the ASSG control model is evaluated in this 

section. To evaluate the system’s robustness the 
disturbances is generated during the operation. 
Furthermore, to introduce perturbations, a white 
noise and sine wave noise was incorporated in 
the system. Additionally, a comparative evalua-
tion is carried out to assess the effectiveness of 
the designed ASSG model in comparison to three 
control model: the traditional PID controller, 
the fuzzy PID (FPID) controller, the SMCPID. 
Firstly, simulations evaluated the system’s out-
put which respect to a sinusoidal trajectory, with 
results shown in Figures 6–10. Initially, the PID 
controller demonstrated significant oscillations 
and errors, attributed to fixed gains (short-dashed 
purple lines). The system also showed sluggish 
and unstable responses during peak activity. Fig-
ure 6 displays the PID controller’s position re-
sponses, while Figure 7 shows the corresponding 
tracking errors with the same line style.

Subsequently, the control method utilizing 
FPID is applied to evaluate performance, using the 
same reference and noise as the PID assessment. 
However, improvements were limited by the fuzzy 
set’s ability to handle diverse operational condi-
tions. The FPID controller (dash-dotted green line 
in Figure 6) showed better position tracking than 
the PID controller, but control errors remained un-
satisfactory (Fig. 7, same line style). Furthermore, 
the SMCPID controller is implemented to assess the 

where: the least squares method is used to establish the parameter 2 2[ , ]  . Particularly, the least 
squares method can be executed as follows: 
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By employing the GM2(1,1), the output response to the perturbations and noises of the system in 
the next step can be obtained. Consequently, the additive signal output of the controller for the coming 
disturbance is denoted as: 
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where: kSG represents an additive gain. 
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Figure 5. Schematic diagram of the EHA system in co-simulation platform

performance. As depicted in Figure 6, the SMCPID 
controller demonstrated improved effectiveness 
compared to other methods, represented by the dot-
ted blue line. However, with significant noise and 
disturbances, the response of the system produces 
oscillations, the errors is deemed unacceptably 
large, as shown by the same line style in Figure 7.

To tackle the control challenges mentioned 
earlier, the ASSG controller outlined in Section 
2 is applied to the system. The trajectory tracking 
results for the sinusoidal reference are shown by 
the dashed red line in Figure 6, with the corre-
sponding error represented in Figure 7 using the 
same line style. These findings illustrate that the 
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Table 3. System configuration
Device

Specification
Name Model

Hydraulic cylinder HJ020

Length of stroke 0.5 m

Piston diameter 0.025 m

Rod diameter 0.0125 m

Hydraulic relief valve RV010
Cracking pressure 150 bar

Flowrate pressure gradient 500 L/min/bar

Hydraulic check valve CV005
Cracking pressure 1.5 bar

Flowrate pressure gradient 50 L/min/bar

Hydraulic pump PU001
Displacement 100 cc/rev

Typical speed 1000 rev/min

Mass M MECFR1TK0 Mass 10 kg

Mass friction MAS010RT
Contact stiffness 200 N/mm

Coefficient of viscous friction 1000 N/(m/s)

Pneumatic cylinder PNJ0001

Length of stroke 0.5 m

Piston diameter 0.025 m

Rod diameter 0.0125 m

Pneumatic relief valve PNRV00 Cracking pressure 5 bar

Modulated pneumatic orifice PNVO001 Flow coefficient setting 0~1

Figure 6. Comparison of trajectory tracking control performance for a sinusoidal reference by using different controllers

Figure 7. Comparison of trajectory tracking errors for a sinusoidal reference by using different controllers
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Figure 8. SGP prediction error for a sinusoidal reference by using the ASSG controller

Figure 9. The PID controller parameters for a sinusoidal reference by using the ASSG controller

ASSG control model consistently performs better 
than those of other control method by delivering 
faster, highly accurate, and stable system respons-
es. The speed of the motor that drives the pump 
of the hydraulic system is depicted in Figure 10. 

The ASSG controller achieves this by leverag-
ing the strengths of the ASPID controller and the 
SGP predictor. The prediction errors of the SGP 
for system responses are illustrated in Figure 8 
and the PID parameters are indicated in Figure 9 

Figure 10. The speed of motor employed in the system for a sinusoidal reference by using the ASSG controller
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while the load condition for all evaluation case 
is shown in Figure 11. Furthermore, the ASSG 
controller effectively mitigates the negative im-
pacts of disturbances and noise by implementing 
compensatory control actions generated by the 
SGP. As seen in the figures, the ASSG control-
ler consistently outperformed other controllers 
(PID, FPID, SMCPID) in terms of speed, preci-
sion, and stability, particularly under disturbances 
and noise. This demonstrates its robustness and 
adaptability in varying operational conditions. 
The ASSG controller integrates the ASPID with 
a the SGP, allowing for real-time parameter opti-
mization and proactive control adjustments. This 
combination enhances the controller’s ability to 
mitigate oscillations and control errors effective-
ly. The SGP’s self-tuning capabilities enable it to 
forecast system responses and generate compen-
satory control inputs, which significantly improve 
overall control performance. This mechanism 

ensures that the controller can adapt to paramet-
ric uncertainties and maintain precise tracking of 
predefined trajectories. Consequently, the pro-
posed ASSG controller significantly enhances 
precise tracking performance.

Subsequent simulations focused on position 
control using trapezoidal trajectory which is ap-
plied in most applications of industrial motion 
control with various controllers, as depicted in 
Figures 12–16. The PID control method, repre-
sented by the short-dashed purple line, exhibited 
unstable performance in periods of heightened 
activity. Besides, the FPID controller, shown by 
the dash-dotted green line in both figures, demon-
strated improved efficiency with respect to those 
of the PID controller. However, control errors 
observed with the FPID controller for trapezoi-
dal trajectories were considered unsatisfactory. 
Furthermore, the SMCPID controller, illustrated 
by the dotted blue line, outperformed traditional 

Figure 11. The load condition corresponds to the evaluations

Figure 12. Comparison of trajectory tracking control performance for a trapezoidal reference by using different 
controllers
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Figure 13. Comparison of trajectory tracking errors for a trapezoidal reference by using different controllers

Figure 14. SGP prediction error for a trapezoidal reference by using the ASSG controller

Figure 15. The PID controller parameters for a trapezoidal reference by using the ASSG controller

methods. Despite this, the system’s actuation 
showed oscillations and experienced excessively 
high errors in certain regions, particularly under 
disturbance and noise impacts. Both the FPID and 
SMCPID controllers faced challenges in effec-
tively controlling the system, as indicated by the 
short-dotted cyan and short-dashed purple lines 

in Figures 12–13. These controllers exhibited os-
cillatory responses and unacceptable error levels, 
especially under significant noise and disturbance 
conditions. Conversely, the results from the trap-
ezoidal trajectory simulations conclusively dem-
onstrate that the ASSG controller consistently 
performs better efficiency than those of other 
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controllers. The system’s responses were notably 
faster, more precise, and exhibited superior stabil-
ity compared to alternative control methods. The 
speed of the motor that drives the pump of the 
hydraulic system is depicted in Figure 16. Figure 
14 illustrates the effective predictive capability of 
SGP in relation to the system’s response, along 
with visual representation of the corresponding 
prediction errors and the PID controller param-
eters are indicated in Figure 15.

Furthermore, the performance of the control-
lers are analyzed in Table 4 using the evaluation 
criterias: root mean square error (RMSE) and av-
erage relative error (ARE) which are defined as 
Equations 42–43, respectively. 

	 RMSE = √1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖𝑖𝑖(𝑘𝑘) − 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘))

2𝑛𝑛
𝑘𝑘=1    (1) 

ARE = 1
𝑛𝑛∑ (|𝑦𝑦𝑖𝑖𝑖𝑖(𝑘𝑘)−𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘)|𝑦𝑦𝑖𝑖𝑖𝑖(𝑘𝑘)

× 100)𝑛𝑛
𝑘𝑘=1 [%]   (2) 

	 (42)

	

RMSE = √1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖𝑖𝑖(𝑘𝑘) − 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘))

2𝑛𝑛
𝑘𝑘=1    (1) 

ARE = 1
𝑛𝑛∑ (|𝑦𝑦𝑖𝑖𝑖𝑖(𝑘𝑘)−𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘)|𝑦𝑦𝑖𝑖𝑖𝑖(𝑘𝑘)

× 100)𝑛𝑛
𝑘𝑘=1 [%]   (2) 	(43)

It is clear that the ASSG controller demon-
strated superior efficiency compared to tradi-
tional controllers, achieving faster response times 
and reduced tracking errors. This advantage is 

particularly evident in its ability to maintain sta-
bility and accuracy even under significant distur-
bances and noise. The combination of the ASPID 
controller and the SGP predictor enables the con-
troller to effectively manage the dynamic changes 
in the system’s behavior during trapezoidal mo-
tion. The SGP’s predictive capabilities facilitate 
the generation of compensatory control signals that 
counteract disturbances, enhancing the control-
ler’s robustness. By continuously optimizing the 
control parameters based on real-time feedback, 
the ASSG controller ensures precise tracking of 
the trapezoidal reference, minimizing oscillations 
and control errors throughout the operation.

CONCLUSIONS

This study proposes a predictor-integrated 
adaptive controller for enhancing position track-
ing control in hydraulic systems. This adaptive 
controller combines a PID controller and a slid-
ing surface to guide EHAs along specified trajec-
tories, optimizing parameters to minimize control 

Figure 16. The speed of motor employed in the system for a trapezoidal reference by using the ASSG controller

Table 4. Control performance evaluation
Validation Evaluation criteria

Case Controller RMSE [m] ARE [%]

Sinusoidal

PID 0.006342 0.4885

FPID 0.003605 0.3140

SMCPID 0.002719 0.2432

ASSG 0.001345 0.1198

Trapezoidal

PID 0.006105 0.5019

FPID 0.002584 0.2044

SMCPID 0.001841 0.1612

ASSG 0.000901 0.0798
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errors. Additionally, the dynamic step size of the 
smart grey prediction model adjusts controller 
parameters and generates supplementary con-
trol signals to attenuate noise and disturbances, 
thereby improving overall control performance. 
Simulation results confirm the efficacy of this 
approach, highlighting superior accuracy and 
performance compared to existing methods. The 
adaptive learning of the control model optimizes 
parameters for varying conditions, while continu-
ous adjustment by the prediction model ensures 
precise system output estimation. In real-time 
EHA systems, quick response and precision are 
essential. The proposed controller’s ability to pre-
dict system behaviours and adjust its control ac-
tions in real time allows it to meet the stringent 
timing and accuracy requirements of online po-
sition tracking. By dynamically tuning the con-
trol parameters based on real-time feedback, the 
ASSG controller is capable of maintaining stable 
and accurate positioning even under varying op-
erational conditions. This makes it highly feasible 
for real-time deployments where system dynam-
ics can change rapidly. The proposed approach’s 
scalability and real-time adaptability allow for 
seamless deployment in electronic control units 
(ECUs), particularly in industries such as aero-
space, automotive, and robotics. This work rep-
resents a significant advancement in control tech-
nology, offering robust, real-time solutions for 
complex hydraulic systems. 

For future work, several areas could be ex-
plored to enhance the proposed controller’s per-
formance and extend its applications. First, the 
integration of advanced machine learning tech-
niques could further improve the adaptive capabil-
ities of the controller, allowing it to better predict 
and respond to highly dynamic environments and 
more complex disturbances. Second, hardware-
in-the-loop (HIL) testing and real-world imple-
mentation on physical systems would be a crucial 
step in validating the controller’s real-time ap-
plicability in practical settings, such as aerospace 
and automotive systems. This would provide 
insights into the controller’s performance under 
actual operational constraints and help optimize 
the algorithm for specific ECU hardware. Addi-
tionally, expanding the controller’s framework to 
handle multi-input multi-output (MIMO) systems 
could broaden its range of applications, making 
it suitable for more complex control problems. 
Lastly, the exploration of energy efficiency im-
provements in electro-hydraulic systems through 

the controller’s adaptive and predictive nature 
could be an important future direction, especially 
for applications with strict energy constraints.
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