Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present study, the lead-free BaTi1-x Zrx O3 (for x = 0, 0.05 and 0.15) ceramics were prepared by High-Energy Ball Milling and heat treatments. The performed X-ray, SEM and EDS measurements confirmed high purity, good quality and the expected quantitative composition of the obtained samples. The study of dielectric properties was performed by means of broadband dielectric spectroscopy at the frequency ranging from 0.1 Hz to 10 MHz. The obtained measurement data, analyzed in accordance with the Arrhenius formalism demonstrated the presence of relaxation type dielectric mechanisms. The impedance answer of studied ceramic materials indicated the presence of two relaxation processes: one with a dominant resistive component and the other with a small capacitive component. The observed dielectric relaxation process is temperature dependent and has a “non-Debye” character.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1391--1396
Opis fizyczny
Bibliogr. 31 poz., fot., rys.
Twórcy
autor
- Institute of Technology, Pedagogical University of Cracow, 2 Podchorążych Str., 30-084 Kraków, Poland
autor
- Institute of Technology, Pedagogical University of Cracow, 2 Podchorążych Str., 30-084 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, 24 Warszawska Str., 31-155 Kraków, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 11/12 G. Narutowicza Str., 80-233, Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 11/12 G. Narutowicza Str., 80-233, Gdańsk, Poland
Bibliografia
- [1] P. Baláž, M. Achimovičová, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J. M. Criado, F. Delogu, E. Dutková, E. Gaffet, F. J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Hallmarks of mechanochemistry: From nanoparticles to technology, Chem. Soc. Rev. 42, 7571-7637 (2013).
- [2] M. Sopicka-Lizer, High-Energy Ball Milling: Mechanochemical Processing of Nanopowders, CRC Press, Boca Raton USA, (2010).
- [3] L. B. Kong, T. S. Zhang, J. Ma, F. Boey, Progress in synthesis of ferroelectric ceramic materials via high energy machanochemical technique, Prog. Mater. Sci. 53, 207-322 (2008).
- [4] K. Wieczorek-Ciurowa, P. Dulian, W. Bąk, C. Kajtoch, High-energy ball milling as a green chemistry method for modification of CaTiO3 electrical properties, Przemysł Chemiczny 90, 1400-1403 (2011).
- [5] S. Parida, S. K. Rout, L. S. Cavalcante, E. Sinha, M. Siu Li, V. Subramanian, N. Gupta, V. R. Gupta, J. A. Varela, E. Longo, Structural refinement, optical and microwave dielectric properties of BaZrO3, Ceram. Int. 38, 2129-2138 (2012).
- [6] J. R. Tolchard, T. Grande, Chemical compatibility oxide cathodes for BaZrO3 electrolytes, Solid State Ionics 178, 593-599 (2007).
- [7] R. Khenata, M. Sahnoun, H. Baltache, M. Rerat, A. H. Rashek, N. Illes, B. Bouhafs, First principle calculations of structural, electronic and optical properties of BaTiO3 and BaZrO3 under hydrostatic pressure, Solid State Commun. 136, 120-125 (2005).
- [8] C. Ciomaga, M. Viviani, M. T. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, Preparation and characterisation of the Ba(Zr,Ti)O3 ceramics with relaxor properties, J. Eur. Ceram. Soc. 27, 4061-4064 (2007).
- [9] B. Garbarz-Glos, W. Śmiga, R. Bujakiewicz-Korońska, W. Suchanicz, M. Dambekalne, M. Livinsh, A. Sternberg, Influence of zirconium on structural, microstructural and ferroelectric properties of BaZr0.20Ti0.80O3 ceramic, Int. Ferroelectrics 108, 67-76 (2009).
- [10] B. Garbarz-Glos, R. Bujakiewicz-Korońska, D. Majda, M. Antonova, A. Kalvane, C. Kuś, Differential scanning calorimetry investigation of phase transition in BaZrxTi1-xO3, Integr. Ferroelectr. 108,106-115 (2009).
- [11] Z. Yu, C. Ang, R. Guo, A. S. Bhalla, Dielectric properties of Ba(Ti1-xZrx)O3 solid solution, Mater. Lett. 61, 326-329 (2007).
- [12] V. V. Shvartsman, J. Zhai, W. Kleemann, The dielectric relaxation in solid solutions BaTi1-xZrxO3, Ferroelectrics 379, 77-85 (2009).
- [13] J. E. Bauerle, Study of solid electrolyte polarization by a complex admittance method, J. Phys. Chem. Solids 30, 2657- 2670 (1969).
- [14] E. J. Abram, D. C. Sinclair, A. R. West, A strategy for analysis and modelling of impedance spectroscopy data of electroceramics: doped lanthanum gallate, J. Electroceram. 10, 165-177 (2003).
- [15] N. Hirose, A. R. West, Impedance spectroscopy of undoped BaTiO3ceramics, J. Am. Ceram. Soc. 79, 1633-1641 (1996).
- [16] K. Cole, R. Cole, Dispersion and absorption in dielectrics. I. Alternating current characteristics, J. Chem. Phys. 9, 341-352 (1941).
- [17] D. Davidson, R. Cole, Dielectric relaxation in glycerol, propylene glycol, and n-propanol, J. Chem. Phys. 19, 1484-1490 (1951).
- [18] S. Havriliak, S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Polymer 8, 161-210 (1967).
- [19] J. Rodriguez-Carvajal, Fullprof: A Program for Rietveld Refinement and Pattern Matching Analysis, Abstract of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 127-132 (1990).
- [20] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta. Crystallogr. A. 32,751-926 (1976).
- [21] P. Dulian, B. Garbarz-Glos, W. Bąk, M. Antonova, C. Kajtoch, K. Wieczorek-Ciurowa, H. Noga, Dielectric behaviour of ceramics obtained by means of solid state and mechanochemical synthesis, Ferroelectrics 497, 1-7 (2016).
- [22] B. Garbarz-Glos, AC impedance spectroscopy study of BaZr0.10Ti0.90O3 ceramics, Ferroelectrics 486, 1-7 (2015).
- [23] J. I. Langford, A. J. C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr. 11, 102-113 (1978).
- [24] D. C. Sinclair, A. R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance, J. Appl. Phys. 66, 3850-3863 (1989).
- [25] P. Debye, Polar Molecules, Dover Publications, New York (1959).
- [26] H. Fröhlich, Theory of dielectrics, Dielectric constant and loss, Oxford University Press, London (1958).
- [27] H. Bӧttger, V. V. Bryksin, Hopping Conduction in Solids, Akademie-Verlag, Berlin (1985).
- [28] H. J. Hagemann, D. Hennings, J. Am. Ceram. Soc. 64, 590-594 (1981).
- [29] K. Tkacz-Śmiech, A. Koleżyński, W. S. Ptak, Ferroelectrics 237, 57-64 (2000).
- [30] K. Tkacz-Śmiech, A. Koleżyński, W. Jastrzębski, Ferroelectrics 315, 73-81 (2005).
- [31] V. Sepelak, A. Duevel, M. Wilkening, K. D. Becker, P. Heitjans, Chem. Soc. Rev. 42, 7507-7520 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e69569df-aac5-4c86-aacf-1a0317f0c48d