Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Następczy wpływ produktów ropopochodnych w glebie i ich bioremediacji na interakcję roślina – roślinożerca
Języki publikacji
Abstrakty
The aim of the study was to determine the time-delayed (after three years from the moment of soil pollution) effect of petroleum-derived products (PDPs) (petrol, diesel fuel and used engine oil) on the interaction between selected host plant (broad bean) and a herbivorous insect closely related to it (Sitona spp.). We assessed the condition of the plant exposed to pollutants (i.e. its growth and chemical composition), then we evaluated the attractiveness of the plant for both larvae and adults of the insect. The evaluation covered also the effect of bioremediation by using ZB-01 biopreparation. The results showed that after 3 years from soil contamination, engine oil and diesel fuel limited the feeding of adult sitona weevils while petrol caused increase in the attractiveness of plants for these insects. The PDPs negatively affected the growth of plants. The changes in element content depended on the type of pollutant. The biopreparation ZB-01 eliminated or reduced the differences caused by the presence of PDPs in the soil regarding the chemical composition of the host plant, and limited feeding by both the larvae and adult individuals of sitona weevils. The negative relationships between the contents of both some macroelements (Mg, S) and heavy metals (Zn, Ni), and feeding of imago of Sitona were observed. The obtained results indicate that PDPs remain for a long time in the environment and adversely affect not only the organisms directly exposed to the pollution – plants growing on polluted soil but also further links of the trophic chain, i.e. herbivores.
Celem badań było określenie następczego (tj. po trzech latach od momentu zanieczyszczenia gleby) wpływu produktów ropopochodnych (benzyny, oleju napędowego i zużytego oleju silnikowego) na interakcję między wybraną rośliną (bób Vicia faba L.) i blisko z nią związanym owadem roślinożernym (oprzędzik – Sitona spp.). Oceniono stan rośliny narażonej na działanie poszczególnych zanieczyszczeń (tzn. jej wzrost i skład chemiczny), a następnie określono atrakcyjność rośliny zarówno dla larw, jak i postaci imaginalnych oprzędzików. Ocenie poddano również wpływ bioremediacji z użyciem biopreparatu ZB-01 na wymienione parametry. Stwierdzono, że po 3 latach od zanieczyszczenia gleby olej silnikowy i olej napędowy ograniczały żerowanie dorosłych oprzędzików, natomiast benzyna przeciwnie – spowodowała wzrost atrakcyjności roślin dla tych owadów. Ropopochodne negatywnie wpłynęły na wzrost roślin bobu, natomiast zawartość pierwiastków w roślinach była zróżnicowana i zależała od rodzaju zanieczyszczenia, na które były narażone. Biopreparat ZB-01 zniwelował lub wyraźnie zmniejszył różnice spowodowane obecnością ropopochodnych w glebie w odniesieniu do składu chemicznego roślin oraz ograniczył żerowanie zarówno larw, jak i dorosłych postaci Sitona spp. Zaobserwowano negatywne zależności pomiędzy zawartością zarówno niektórych makroelementów (Mg, S), jak i metali ciężkich (Zn, Ni) a żerowaniem imago oprzędzików. Uzyskane wyniki potwierdzają, że ropopochodne wykazują długotrwałe negatywne oddziaływanie na środowisko i wskazują, że mogą one niekorzystnie wpływać nie tylko na organizmy bezpośrednio narażone na zanieczyszczenia – rośliny rosnące na zanieczyszczonej glebie, ale także na dalsze ogniwa łańcucha troficznego, czyli roślinożerców.
Czasopismo
Rocznik
Tom
Strony
71--81
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
autor
- Department of Microbiology and Biomonitoring, University of Agriculture, Kraków, Poland
autor
- Department of Microbiology and Biomonitoring, University of Agriculture, Kraków, Poland
- Department of Ecology, University of Silesia in Katowice, Poland
Bibliografia
- 1. Bose, J., Babourina, O. & Rengel. Z. (2010). Role of magnesium in alleviation of aluminium toxicity in plants. Journal of Experimental Botany, 62, 7, pp. 2251-2264, DOI: 10.1093/jxb/erq456.
- 2. Buckhout, T.J. & Schmidt, W. (2010). Iron in Plants. Wiley Online Library 2010, DOI: 10.1002/9780470015902.a0023713.
- 3. Burghal, A.A., Al-Mudaffar, N.A. & Mahdi, K.H. (2015). Ex situ bioremediation of soil contaminated with crude oil by use of actinomycetes consortia for process bioaugmentation. European Journal of Experimental Biology, 5, pp. 24-30.
- 4. Dorn, P.B. & Salanitro, J.P. (2000). Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere. 40, 4, pp. 419-426, DOI:10.1016/S0045-6535(99)00304-5.
- 5. Gospodarek, J. & Nadgórska-Socha, A. (2016). Chemical composition of broad beans (Vicia faba L.) and development parameters of black bean aphid (Aphis fabae Scop.) under conditions of soil contamination with oil derivatives. Journal of Elementology, 21, 4, pp. 1359-1376, DOI: 10.5601/jelem.2015.20.1.770.
- 6. Gospodarek, J., Petryszak, P. & Kołoczek, H. (2016). The effect of the bioremediation of soil contaminated with petroleum derivatives on the occurrence of epigeic and edaphic fauna. Bioremediation Journal, 20, 1, pp. 38-53, DOI: 10.1080/10889868.2015.1096899.
- 7. Grifoni, M., Rosellini, I., Angelini, P., Petruzzelli, G. & Pezzarossa, B. (2020). The effect of residual hydrocarbons in soil following oil spillages on the growth of Zea mays plants. Environmental Pollution, 265, A, 114950, DOI: 10.1016/j.envpol.2020.114950.
- 8. Hanavan, R.P. & Bosque-Pérez, N.A. (2012). Effects of tillage practices on pea leaf weevil (Sitona lineatus L., Coleoptera: Curculionidae) biology and crop damage: A farm-scale study in the US Pacific Northwest. Bulletin of Entomological Research, 102, pp. 682-691, DOI: 10.1017/S0007485312000272.
- 9. Hepler, K.H. (2005). Calcium: a central regulator of plant growth and development. The Plant Cell, 17, 8, pp. 2142-2156, DOI:10.1105/tpc.105.032508.
- 10. Himanen, S.J., Nissinen, A., Dong, W., Nerg, A., Stewart, C.N., Poppy, G.M. & Holoppainen, J.K. (2008). Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate? Global Change Biology,14, pp. 1437-1454, DOI:10.1111/j.1365-2486.2008.01574.x.
- 11. Jamal, A., Moon, Y.S., Abdin, M.Z. (2010). Sulphur - a general overview and interaction with nitrogen. Australian Journal of Crop Science, 4, 7, pp. 523-529.
- 12. Jhee, E., Boyd, R. & Eubanks, M. (2006). Effectiveness of metal-metal and metal-organic compound combinations against Plutella xylostella: implications for plant elemental defense. Journal of Chemical Ecology, 32, 2, pp. 239-259, DOI:10.1007/s10886-005-9000-0.
- 13. Jiang, D., Tan, M., Guo, Q. & Yan, S. (2021). Transfer of heavy metal along food chain: a mini-review on insect susceptibility to entomopathogenic microorganisms under heavy metal stress. Pest Management Science, 77, 3, pp. 1115-1120, DOI: 10.1002/ps.6103.
- 14. John, R.C., Akpan, M.M., Essien, J.P. & Ikpe, D. I. (2010). Impact of crude oil pollution on the densities of nitrifying and denitrifying bacteria in the rhizosphere of tropical legumes grown on wetland soil. Nigerian Journal of Microbiology, 24, 1, pp. 2088-2094.
- 15. Kaszycki, P., Szumilas, P. & Kołoczek, H. (2001). Biopreparat przeznaczony do likwidacji środowiskowych skażeń węglowodorami i ich pochodnym. Inżynieria Ekologiczna, 4, pp. 15-22.
- 16. Kaszycki, P., Pawlik, M., Petryszak, P. & Kołoczek, H. (2010). Aerobic process for in situ bioremediation of petroleumderived contamination of soil: a field study based on laboratory microcosm tests. Ecological Chemistry and Engineering A, 17, 4-5, pp. 405-414.
- 17. Kaszycki, P., Pawlik, M., Petryszak, P. & Kołoczek, H. (2011). Ex situ bioremediation of soil polluted with oily waste: The use of specialized microbial consortia for process bioaugmentation. Ecological Chemistry and Engineering S, 18, 1, pp. 83-92.
- 18. Kaszycki, P., Petryszak, P. & Supel, P. (2015). Bioremediation of a spent metalworking fluid with auto- and allochthonous bacterial consortia. Ecological Chemistry and Engineering S, 22, 2, pp. 285-299.
- 19. Lizbeth, P.A., Liliana, M.B., Luis, I.D.J. & Manuel, S.Y.J. (2020). Soil polluted by waste motor oil: remediation by biostimulation. Journal of the Selva Andina Research Society, 11, 2, pp. 84-93.
- 20. Lou, Y. & Baldwin, I.T. (2004). Nitrogen supply influences herbivoreinduced direct and indirect defenses and transcriptional responses in Nicotiana attenuate. Plant Physiology, 135, 1, pp. 496-506, DOI:10.1104/pp.104.040360.
- 21. Louati, H., Ben Said, O., Soltani, A., Cravo-Laureau, C., Duran, R., Aissa, P., Mahmoudi, E. & Pringault, O. (2015). Responses of a free-living benthic marine nematode community to bioremediation of a PAH mixture. Environmental Science and Pollution Research, 22, 20, pp. 15307-15318, DOI: 10.1007/s11356-014-3343-4.
- 22. Lu, Z.X., Villareal, S., Yu, X.P., Heong, K.L. & Hu, C. (2005). Effects of nitrogen nutrient on the behavior of feeding and oviposition of the brown planthopper, Nilaparvata lugens on IR64. Journal of Agriculture & Life Sciences, 31, 1, pp. 62-70.
- 23. Malallah, G., Afzal, M., Gulshan, S., Abraham, D., Kurian, M. & Dhami, M.S.I. (1996). Vicia faba as a bioindicator of oil pollution. Environmental Pollution, 92, 2, pp. 213-217, DOI: 10.1016/0269-7491(95)00085-2.
- 24. Martin, C.W. & Swenson, E.M. (2018). Herbivory of oil-exposed submerged aquatic vegetation Ruppia maritima. Plos One 13, DOI: 10.1371/journal.pone.0208463.
- 25. Mauricio-Gutierrez, A., Machorro-Velazquez, R., Jimenez-Salgado, T., Vazquez-Cruz, C., Patricia Sanchez-Alonso, M. & Tapia-Hernandez, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils. Archives of Environmental Protection, 46, 4, pp. 59-69, DOI: 10.24425/aep.2020.135765.
- 26. Odjegba, V.J. & Atebe, J.O. (2007). The effect of used engine oil on carbohydrate, mineral content and nitrate reductase activity of leafy vegetable (Amaranthus hybridus L.). Journal of Applied Sciences and Environmental Management, 11, 2, pp. 191-196, DOI: 10.4314/jasem.v11i2.55039.
- 27. Ogboghodo, I.A., Iruaga, E.K., Osemwota, I.O. & Chokor, J.U. (2004). An assesment of the effect of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude types - Forcados Light and Escravos Light. Environmental Monitoring and Assessment 96, pp. 143-152, DOI: 10.1023/B:EMAS.0000031723.62736.24.
- 28. Pennings, S.C., McCall, B.D. & Hooper-Bui, L. (2014). Effects of oil spills on terrestrial arthropods in coastal wetlands. BioScience, 64, 9, pp. 789-795, DOI: 10.1093/biosci/biu118.
- 29. Petryszak, P., Kołoczek, H. & Kaszycki, P. (2008). Biological treatment of wastewaters generated by furniture industry. Part 1. Laboratory-scale process for biodegradation of recalcitrant xenobiotics. Ecological Chemistry and Engineering A, 15, 10, pp. 1129-1141.
- 30. Rashid, M.M., Jahan, M. & Islam, K.S. (2016). Impact of nitrogen, phosphorus and potassium on Brown Plant hopper and tolerance of its host rice plants. Rice Science, 23, pp. 119-131, DOI: 10.1016/j.rsci.2016.04.001.
- 31. Rosik-Dulewska, C., Ciesielczuk, T. & Krysinski, M. (2012). Organic pollutants in groundwater in the former airbase. Archives of Environmental Protection, 38, 1, pp. 27-34.
- 32. Rusin, M., Gospodarek, J. & Nadgórska-Socha, A. (2015). The effect of petroleum-derived substances on the growth and chemical composition of Vicia faba L. Polish Journal of Environmental Studies, 24, 5, pp. 2157-2166, DOI: 10.15244/pjoes/41378.
- 33. Rusin, M., Gospodarek, J., Nadgórska-Socha, A. & Barczyk, G. (2017). Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean. Ecotoxicology, 26, pp. 308-319, DOI: 10.1007/s10646-017-1764-9.
- 34. Schratzberger, M., Daniel, F., Wall, C.M., Kilbride, R., Macnaughton, S.J., Boyd, S.E., Rees, H.L., Lee, K. & Swannell, R.P.J. (2003). Response of estuarine meio-and macrofauna to in situ bioremediation of oil-contaminated sediment. Marine Pollution Bulletin, 46, 4, pp. 430-443, DOI:10.1016/S0025-326X(02)00465-4.
- 35. Sylvain, Z.A., Espeland, E.K., Rand, T.A., West, N.M. & Branson, D.H. (2019). Oilfield reclamation recovers productivity but not composition of arthropod herbivores and predators. Environmental Entomology, 48, pp. 299-308, DOI: 10.1093/ee/nvz012.
- 36. Thomine, S. & Lanquar, V. (2011). Iron Transport and Signaling in Plants. Transporters and Pumps in Plant Signaling, 7, pp. 99-131, DOI: 10.1007/978-3-642-14369-4_4.
- 37. Tsutsumi, H., Hirota, Y. & Hirashima, A. (2000). Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. II. Toxicity of a bioremediation agent with microbiological cultures in aquatic organisms. Marine Pollution Bulletin, 40, 4, pp. 315-319, DOI: 10.1016/S0025-326X(99)00219-2.
- 38. Wu, B., Guo, S.H. & Wang, J.N. (2021). Spatial ecological risk assessment for contaminated soil in oiled fields. Journal of Hazardous Materials, 403, 123984, DOI: 10.1016/j.jhazmat.2020.123984.
- 39. Wyszkowska, J., Kucharski, M. & Kucharska, J. (2006). Application of the activity of soil enzymes in the evaluation of soil contamination by diesel oil. Polish Journal of Environmental Studies, 15, 3, pp. 499-504.
- 40. Wyszkowski, M. & Ziółkowska, A. (2009). Effect of compost, bentonite and calcium oxide on concent of some macroelements in plants from soil contaminated by petrol and diesel oil. Journal of Elementology, 14, 2, pp. 405-418.
- 41. Wyszkowski, M., Wyszkowska, J., Borowik, A. & Kordala, N. (2020). Contamination of soil with diesel oil, application of sewage sludge and content of macroelements in oats. Water Air and Soil Pollution 231, 12, DOI: 10.1007/s11270-020-04914-2.
- 42. Zawierucha, I., Malina, G., Ciesielski, W. & Rychter, P. (2014). Effectiveness of intrinsic biodegradation enhancement in oil hydrocarbons contaminated soil. Archives of Environmental Protection, 40, 1, 101-113, DOI: 10.2478/aep-2014-0010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e68d8f54-fc6b-4ed8-b989-66efcddfe565