PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and corrosion properties of highly porous Ta-Nb-Sn alloy for intervertebral disc in spinal applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, low Young’s modulus, highly porous Ta-Nb-Sn alloy foam was manufactured by using the space holder method. The aim of this study is development of an alloy with high wear resistance, with Young’s modulus, with good imaging (MRI, CT) properties, and with high bioactivity. Ta alloy foam can be used in spinal applications (intervertebral disc) or dental applications. The space holder method enables the manufacturing of open-cell foam with a low elastic modulus. Powder mixtures were prepared through mechanical alloying. Carbamide was used to form pores. Ta has suitable strength, ductility, corrosion resistance, and biocompatibility. Ta has high price, however, and a high melting temperature, high activity, and high density. Nb addition lowered the melting temperature, elastic modulus, and cost of using Ta. The sinterability of Ta was enhanced by Sn addition. The corrosion behaviour of Ta alloy was examined. Young’s modulus was determined by compression and ultrasonic tests. Tomography and radiography tests were also used.
Wydawca
Rocznik
Strony
95--106
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Istanbul University-Cerrahpasa, Metallurgical and Materials Engineering Department, 34320, Istanbul, Turkey
autor
  • Istanbul University-Cerrahpasa, Metallurgical and Materials Engineering Department, 34320, Istanbul, Turkey
Bibliografia
  • [1] Wenjuan W, Chenguang B, GuiBao Q, Qiang W. Processing and properties of porous titanium using space holder technique. Mater Sci Eng A. 2009;506:148–51.
  • [2] Mutlu I, Oktay E. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Mater Sci Eng C. 2013;33(3):1125–31.
  • [3] Gibson LJ. Biomechanics of cellular solids. J Biomech. 2005;38:377–99.
  • [4] Ashby MF, Evans AG, Fleck NA, LJGibson, Hutchinson JW, Wadley HNG. Metal foams: a design guide. Boston, MA: Elsevier Science; 2000.
  • [5] Wang H, Li J, Yang H, Liu C, Ruan J. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering. Mater Sci Eng C. 2014;40:71–5.
  • [6] Ruperez E, Manero JM, Riccardi K, Li Y, Aparicio C, Gil FJ. Development of tantalum scaffold for orthopedic applications produced by space-holder method. Mater Des. 2015;83:112–9.
  • [7] Efe M, Kim HJ, Chandrasekar S, Trumble KP. The chemical state and control of oxygen in powder metallurgy Ttantalum. Mater Sci Eng A. 2012;544:1–9.
  • [8] Kim Y, Lee D, Hwang J, Ryu HJ, Hong SH.Fabrication and characterization of powder metallurgy tantalum components prepared by high compaction pressure technique. Mater Charact. 2016;114:225–33.
  • [9] Adamek G, Jakubowicz J. Tantalem foam made with sucrose as a space holder. IJRMHN=M. 2015;53:51–5.
  • [10] Yang H, Li J, Zhou Z, Ruan J. Structural preparation andbiocompatibility evaluation of highly porous tantalum scaffolds. Mater Lett. 2013;100:152
  • [11] Wauthle R, Stok JV, Yavari SA, Humbeeck JV, Kruth JP, Zadpoor AA, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217–25.
  • [12] Kim Y, Kim E, Noh J, Lee S, Kwon Y, Oh IS. Fabrication and mechanical properties of powder metallurgy tantanum prepared by hot isostatic pressing. IJ R MHM. 2015;48:211–16.
  • [13] Papacci F, Rigante L Fernandez E Meglio M, Montano N. Anterior cervical discectomy and interbody fusion with porous tantalum implant: results in a series with long-term follow-up. J Clin Neurosci. 2016;33:159–62.
  • [14] Kasliwal MK, Baskin DS, Traynelis VC. Failure of porous tantalum cervical interbody fusion devices: two-year results from a prospective, randomized, multicenter clinical study. J Spinal Disord Tech. 2013;26(5):239–45.
  • [15] Mobb RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):2–18.
  • [16] Xu J, Xiao L, Zhang Y, Deng G, Liu G, Wu R, Shen H, Zhao X, Liu S, Cai Z. Ultra-high temperature oxidation resistance of a MoSi2 composite coating with TaB2 diffusion barrier on tantalum alloy. Corros Sci. 2023;224:111563.
  • [17] Hao Y, Ye Z, Wang L, Ye M, Dong H, Du Y, Wang C. Dual-electrolyte fabrication of micro arc oxidation coatings on Ta–12W alloy with enhanced wear resistance. Vacuum 2023;211:111698.
  • [18] Ma G, Zhao M, Xiang S, Zhu W, Wu G, Mao X. Effect of the severe plastic deformation on the corrosion resistance of a tantalum–tungsten alloy. Materials. 2022;15:7806.
  • [19] Browning PN, Alagic S, Carroll B, Kulkarni A, Matson L, Singh J. Room and ultrahigh mechanical properties of field assisted tantalum alloys. Mater Sci Eng A. 2017;680:41–51.
  • [20] Ma G, Wei Z, Wu G, Mao Z. Mater Sci Eng A. 2023;880:145312.
  • [21] Wang L, Hu X, Ma X, Ma Z, Zhang Y, Lu Y, et al. Colloids Surf B: Biointerfaces. 2016;148:440–52.
  • [22] Aguilar C, Martin FS, Martinez C, Camara B, Claverias F, Undabarrena A, et et al. Improving mechanical properties and antibacterial response of α/β ternary Tio-Ta foams for biomedical uses. J Mater Res Technol. 2023;24:8735–53.
  • [23] Kuo TY, Chin WH, Chien CS, Hsieh YH. Biocompatibility and corrosion of microplasma-sprayed titanium and tantalum coatings versus titanium alloy. Surf Coat Technol. 2019;372:399–409.
  • [24] Mareci D, Chelariu R, Dan I, Gordin DM, Gloriant T. Corrosion behaviour of β-Ti20Mo alloy in artificial saliva. J Mater Sci Mater Med. 2010;21:2907–13.
  • [25] Sharma M, Kumar AVR, Singh N, Adya N, Saluja B. Electrochemical corrosion behavior of dental/implant alloys in artificial saliva. J Mater Eng Perform. 2008;17:695–701.
  • [26] Ho WF, Wu SC, Lin CW, Hsu SKHC. Electrochemical behavior of Ti-20Cr-X alloys in artificial saliva containing fluoride. J Appl Electrochem. 2011;41:337–43.
  • [27] Oshida Y, Sellers CB, Mirza K, Farzin-Nia F. Corrosion of dental metallic materials by dental treatment agents. Mater Sci Eng C. 2005;25:343–8.
  • [28] Lin FH, Hsu YS, Lin SH, Sun JS. The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials. 2002;23:4029–38.
  • [29] Gurappa I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater Charact. 2002;49:73–9.
  • [30] Okazaki Y, Gotoh E. Conparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26:11–21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6800a77-eeb5-4a14-825a-9a435eea7ece
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.