Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper shows that symmetry forms a basis for relations between different properties of material. In this way, the key quantities for specification of an atomistic model are identified. Material symmetry distinguishes representative processes of small strains. It is proved that the errors in the densities of the energies stored in these processes determine the range of inaccuracies with which an atomistic model recreates processes of small deformations. The errors are equal to the inaccuracies in the eigenvalues of the elasticity tensor, that is in the Kelvin moduli. For cubic crystals, the elementary processes indicated by the symmetry initiate the key paths of large deformations: Bain and trigonal ones. Therefore, the substantial errors in the Kelvin moduli lead to incorrect reconstructing the metastable phases: bcc, sc and bct. The elastic constants commonly used in the literature do not provide such information as the Kelvin moduli. Using the eigenvalues of the elasticity tensor as well as other key properties indicated by the symmetry, the EAM model proposed by A.F. Voter for copper is specified. The obtained potential more accurately reproduces small and large deformations and additionally, correctly describes defect formation as well as Cu dimer properties.
Rocznik
Tom
Strony
441--450
Opis fizyczny
Bibliogr. 41 poz., rys., wykr., tab.
Twórcy
autor
- Department of Strength and Fatigue of Materials and Structures, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Cracow, Poland
Bibliografia
- [1] K. Dems and Z. Mróz, “Analysis and design of thermomechanical interfaces”, Bull. Pol. Ac.: Tech. 60, 205-213 (2012).
- [2] G. Szefer and D. Jasińska, “Modeling of strains and stresses of material nanostructures”, Bull. Pol. Ac.: Tech. 57, 41-46 (2009).
- [3] J. Rychlewski, “On Hooke’s law”, J. Applied Mathematics andMechanics 48, 303-314 (1984).
- [4] K. Nalepka, “Symmetry-based approach to parametrization of embedded-atom-method interatomic potentials”, Comp. Mater. Sci. 56, 100-107 (2012).
- [5] A.F. Voter, Los Alamos Unclassified Technical Report No. LAUR93-3901, 1993, unpublished.
- [6] A.F. Voter, “Parallel replica method for dynamics of infrequent events”, Phys. Rev. B 57 (R 13), 985-988 (1998).
- [7] J.H. Rose, J. Ferrante, and J.R. Smith, “Universal binding energy curves for metals and bimetallic interfaces”, Phys. Rev. Lett. 47, 675-678 (1981).
- [8] A. Banerjea and J.R. Smith, “Origins of the universal bindingenergy relation”, Phys. Rev. B 37, 6632-6645 (1988).
- [9] F.H. Streitz and J.W. Mintmire, “Electrostatic potentials for metal-oxide surfaces and interfaces”, Phys. Rev. B 50, 11996-12003 (1994).
- [10] K. Nalepka, “Efficient approach to metal/metal oxide interfaces within variable charge model”, Eur. Phys. J. B 85, 45 (2012).
- [11] M.S. Daw and M.I. Baskes, “Embedded atom metod: derivation and application to impurities, surfaces, and other defects in metals”, Phys. Rev. B 29, 6443-6453 (1984).
- [12] K. Nalepka and R.B. Pe¸cherski, “Modeling of the interatomic interactions in the copper crystal applied in the structure (111)Cu||(0001)Al2O3”, Archives of Metallurgy and Materials 54, 511-522 (2009).
- [13] K. Kowalczyk-Gajewska and J. Ostrowska-Maciejewska, “Review on spectral decomposition of Hooke’s tensor for all symmetry groups of linear elastic material”, Engng. Trans. 57, 145-183 (2009).
- [14] S. Crampin, K. Hampel, J.M. MacLaren, and D.D. Vvedensky, “The calculation of stacking fault energies in close-packed metals”, J. Mater. Res. 5, 2107-2119 (1990).
- [15] A.F. Wright, M.S. Daw, and C.Y. Fong, “Theoretical investigation of (111) stacking faults in aluminium”, Phil. Mag. A 66, 387-404 (1992).
- [16] N.M. Rosengaard and H.L. Skriver, “Calculated stacking-fault energies of elemental metals”, Phys. Rev. B 47, 12865-12873 (1993).
- [17] R. Eason, Pulsed Laser Deposition of Thin Films:Applications-Led Growth of Functional Materials, John Willey & Sons, Inc., New Jersey, 2007.
- [18] E.A. Rohlfing and J.J. Valentini, “UV laser excited fluorescence spectroscopy of the jet-cooled copper dimer”, J. Chem. Phys. 84, 6560-6566 (1986).
- [19] K.P. Huber and G. Hertzberg, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, 1979.
- [20] T.F. Coleman and Y. Li, “An interior, trust region approach for nonlinear minimization subject to bounds”, SIAM J. Optim. 6, 418-445 (1996).
- [21] MATLAB Reference Guide, The Math Works, Natick, 2011.
- [22] D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1998.
- [23] C.J. Smith, Metal Reference Book, Butterworth, London, 1976.
- [24] F.R. Kroeger and C.A. Swenson, “Absolute linear thermalexpansion measurements on copper and aluminum from 5 to 320 K”, J. Appl. Phys. 48, 853-864 (1977).
- [25] P. Villars, Pearson’s Handbook Desk Edition: CrystallographicData for Intermetallic Phases, ASM International, Materials Park, 1997.
- [26] W.C. Overton JR. and J. Gaffney, “Temperature variation of the elastic constants of cubic elements. I. Copper”, Phys. Rev. B 98, 969-977 (1955).
- [27] Y.A. Chang and L. Himmel, “Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature”, J. Appl. Phys. 37, 3567-3572 (1966).
- [28] Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, “Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations”, Phys. Rev. B 63, 224106 (2001).
- [29] W.R. Tyson and W.A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements”, Surf. Sci. 62, 267-276 (1977).
- [30] D.J.H. Cockayne, M.L. Jenkins, and I.L.F. Ray, “The measurement of stacking-fault energies of pure face-centred cubic metals”, Phil. Mag. 24, 1383-1392 (1971).
- [31] P.R. Thornton and T.E. Mitchell, “Deformation twinning in alloys at low temperatures”, Phil. Mag. 7, 361-375 (1962).
- [32] L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, 1975.
- [33] Y.Wang, S. Curtarolo, C. Jiang, R. Arroyave, T.Wang, G. Ceder, L.-Q. Chen, and Z.-K. Liu, “Ab initio lattice stability in comparison with CALPHAD lattice stability”, Computer Couplingof Phase Diagrams and Thermochemistry 28, 79-90 (2004).
- [34] Th. Hehenkamp, W. Berger, J.-E. Kluin, Ch. Ludecke, and J. Wolff, “Equilibrium vacancy concentrations in copper investigated with the absolute technique”, Phys. Rev. B 45, 1998-2003 (1992).
- [35] R.W. Balluffi, “Vacancy defect mobilities and binding energies obtained from annealing studies”, J. Nucl. Mater. 69&70, 240-263 (1978).
- [36] W. L¨uhr-Tanck, A. Sager, and H. Bosse, “The effect of vacancies and precipitation in CuIn alloys on positron annihilation”, J. Phys. F: Met. Phys. 17, 827-836 (1987).
- [37] H.J.Wollenberger, “Point Defects” in Physical Metallurgy, eds. R.W. Cahn and P. Haasen, Elsevier, Amsterdam, 1996.
- [38] G. Grimvall, B. Magyari-K¨ope, V. Ozolinˇs, and K.A. Persson, “Lattice instabilities in metallic elements”, Rev. Mod. Phys. 84, 945-986 (2012).
- [39] M.J. Mehl, A. Aguayo, and L.L. Boyer, “Absence of metastable states in strained monatomic cubic crystals”, Phys. Rev. B 70, 014105 (2004).
- [40] M. ˇCern´y, R. Boyer, M. ˇSob, and S. Yip, “Higher-energy structures and stability of Cu and Al crystals along displacive transformation paths”, J. Computer-Aided Materials Design 12, 161-173 (2005).
- [41] X.D. Dai, Y. Kong, and J.H. Li, “Long-range empirical potential model: Application to fcc transition metals and alloys”, Phys. Rev. B 75, 104101 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e67a385b-85bf-44af-a1b9-7d014bdc8f5c