Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Dynamic softening behaviors of a promising biomedical Ti-13Nb-13Zr alloy under hot deformation conditions across dual phase α + β and single phase β regions were quantitatively characterized by establishing corresponding dynamic recovery (DRV) and dynamic recrystallization (DRX) kinetic models. A series of wide range hot compression tests on a Gleeble-3500 thermo-mechanical physical simulator were implemented under the strain rate range of 0.01-10 s−1 and the temperature range of 923-1173 K. The apparent differences of flow stress curves obtained in dual phase α + β and single phase β regions were analyzed in term of different dependence of flow stress to temperature and strain rate and different microstructural evolutions. Two typical softening mechanisms about DRV and DRX were identified through the variations of a series of stress-strain curves acquired from these compression tests. DRX is the dominant softening mechanism in dual phase α + β range, while DRV is the main softening mechanism in single phase β range. The DRV kinetic model for single phase β region and the DRX kinetic model for dual phase α + β region were established respectively. In addition, the microstructures of the compressed specimens were observed validating the softening mechanisms accordingly.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2029--2043
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr., wzory
Twórcy
autor
- State Key Laboratory of Mechanical Transmission, School of Material Science and Engineering, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science ond Technology, Hube I 430074, China
autor
- State Key Laboratory of Mechanical Transmission, School of Material Science and Engineering, Chongqing University, Chongqing 400044, China
autor
- State Key Laboratory of Mechanical Transmission, School of Material Science and Engineering, Chongqing University, Chongqing 400044, China
autor
- State Key Laboratory of Mechanical Transmission, School of Material Science and Engineering, Chongqing University, Chongqing 400044, China
Bibliografia
- [1] H. J. Rack, J. I. Qazi, Mater. Sci. Eng. C. 26, 1269-1277 (2006).
- [2] B. Arifvianto, J. Zhou, Materials 7, (2014).
- [3] M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, Prog. Mater. Sci. 54, 397-425 (2009).
- [4] T. Lee, Y.-U. Heo, C. S. Lee, Scr. Mater. 69, 785-788 (2013).
- [5] P. Majumdar, S. B. Singh, M. Chakraborty, J. Mech. Behav. Biomed. Mater. 4, 1132-1144 (2011).
- [6] R. Bobbili, V. Madhu, J. Mech. Behav. Biomed. Mater. 59, 146-155 (2016).
- [7] F. Pilehva, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh, A.R. Khalesian, J. Mater. Eng. Perform. 24, 1799-1808 (2015).
- [8] F. Montheillet, L. Pallot, D. Piot, Mater. Sci. Forum. 706-709, 127-134 (2012).
- [9] F. Warchomicka, C. Poletti, M. Stockinger, Mater. Sci. Eng. A. 528, 8277-8285 (2011).
- [10] A. Momeni, S.M. Abbasi, Mater. Des. 31, 3599-3604 (2010).
- [11] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J. J. Jonas, Prog. Mater. Sci. 60, 130-207 (2014).
- [12] R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. J. Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen, A. D. Rollett, Mater. Sci. Eng. A. 238, 219-274 (1997).
- [13] H. S. Zurob, C. R. Hutchinson, Y. Brechet, G. Purdy, Acta Mater. 50, 3077-3094 (2002).
- [14] F. J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena 2nd ed, Pergamon, Oxford, United Kingdom 2004.
- [15] Y. Q. Ning, X. Luo, H. Q. Liang, H. Z. Guo, J. L. Zhang, K. Tan, Mater. Sci. Eng. A. 635, 77-85 (2015).
- [16] H. Mecking, U. F. Kocks, Acta Metall. 29, 1865-1875 (1981).
- [17] W. F. Cui, Z. Jin, A. H. Guo, L. Zhou, Mater. Sci. Eng. A. 499, 252-256 (2009).
- [18] G. Quan, S. Pu, H. Wen, Z. Zou, J. Zhou, High Temp. Mater. Processes. 34, (2015).
- [19] Y. C. Lin, D. X. Wen, M. S. Chen, Y. X. Liu, X. M. Chen, X. Ma, J. Mater. Res. 31, 2415-2429 (2016).
- [20] R. C. Souza, E. S. Silva, A. M. Jorge, J. M. Cabrera, O. Balancin, Mater. Sci. Eng. A. 582, 96-107 (2013).
- [21] Y. Q. Ning, B. C. Xie, H. Q. Liang, H. Li, X. M. Yang, H. Z. Guo, Mater. Des. 71, 68-77 (2015).
- [22] F. T. Furuhara, B. Poorganji, H. Abe, T. Maki, Jom-Us. 59, 64-67 (2007).
- [23] H. J. McQueen, S. Yue, N. D. Ryan, E. Fry, J. Mater. Process. Technol. 53, 293-310 (1995).
- [24] T. Furuhara, Y. Toji, H. Abe, T. Maki, Mater. Sci. Forum. 426-4, 655-660 (2003).
- [25] J. J. Jonas, X. Quelennec, L. Jiang, É. Martin, Acta Mater. 57, 2748-2756 (2009).
- [26] P. Wilson, Recent Developments in the Study of Recrystallization, InTech, 2013.
- [27] Y.-C. Lin, M.-S. Chen, J. Zhang, Mater. Sci. Eng. A. 499, 88-92 (2009).
- [28] G.-X. Quan, G.-C. Luo, J.-T. Liang, D.-S. Wu, A. Mao, Q. Liu, Comput. Mater. Sci. 97, 136-147 (2015).
- [29] G.-Z. Quan, A. Mao, G.-C. Luo, J.-T. Liang, D.-S. Wu, J. Zhou, Mater. Des. 52, 98-107 (2013).
- [30] B. Dutta, E. Valdes, C. M. Sellars, Acta Metallurgica et Materialia. 40, 653-662 (1992).
- [31] M. A. Mostafaei, M. Kazeminezhad, Mater. Sci. Eng., A. 544, 88-91 (2012).
- [32] D. Feng, X. M. Zhang, S. D. Liu, Y. L. Deng, Mater. Sci. Eng. A. 608, 63-72 (2014).
- [33] R. Zhu, Q. Liu, J. Li, S. Xiang, Y. Chen, X. Zhang, J. Alloys Compd. 650, 75-85 (2015).
- [34] E. S. Puchi-Cabrera, M. H. Staia, J. D. Guérin, J. Lesage, M. Dubar, D. Chicot, Int. J. Plast. 54, 113-131 (2014).
- [35] L.-X. Li, G. Wang, J. Liu, Z.-Q. Yao, T. Non Mater. Soc. 24, 42-48 (2014).
- [36] L. Li, M.Q. Li, J. Luo, Mater. Sci. Eng. A. 628, 11-20 (2015).
- [37] S. H. Zahiri, C. H. J. Davies, P. D. Hodgson, Scr. Mater. 52, 299-304 (2005).
- [38] E. I. Poliak, J. J. Jonas, Acta Mater. 44, 127-136 (1996).
- [39] A. Najafizadeh, J. J. Jonas, ISIJ Int. 46, 1679-1684 (2006).
- [40] J. H. Beynon, C. M. Sellars, ISIJ Int. 32, 359-367 (1992).
- [41] K. L. Wang, M. W. Fu, S. Q. Lu, X. Li, Mater. Des. 32, 1283-1291 (2011).
Uwagi
EN
The work was supported by Chongqing Foundation and Frontier Research Project (cstc2016jcyjA0335), Open Fund Project of State Key Laboratory of Materials Processing and Die & Mould Technology (No.P2017-020), and Research Project of State Key Laboratory of Mechanical Transmission (No. SKLMT-ZZKT-2017M15).
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e66cf418-98cf-4caf-b281-028e248a8fc6