PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Rolling Friction Coefficient on Inter-Particle Percolation in a Packed Bed by Discrete Element Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rolling friction representing the energy dissipation mechanism with the elastic deformation at the contact point could act directly on particle percolation. The present investigation intends to elucidate the influence of rolling friction coefficient on inter-particle percolation in a packed bed by discrete element method (DEM). The results show that the vertical velocity of percolating particles decreases with increasing the rolling friction coefficient. With the increase of rolling friction coefficient, the transverse dispersion coefficient decreases, but the longitudinal dispersion coefficient increases. Packing height has a limited effect on the transverse and longitudinal dispersion coefficient. In addition, with the increase of size ratio of bed particles to percolation ones, the percolation velocity increases. The transverse dispersion coefficient increases with the size ratio before D/d<14. And it would keep constant when the size ratio is greater than 14. The longitudinal dispersion coefficient decreases when the size ratio increases up to D/d=14, then increases with the increase of the size ratio. External forces affect the percolation behaviours. Increasing the magnitude of the upward force (e.g. from a gas stream) reduces the percolation velocity, and decreases the dispersion coefficient.
Twórcy
autor
  • School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
autor
  • School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
autor
  • School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
autor
  • School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
autor
  • School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
autor
  • School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
Bibliografia
  • [1] B. Anameric, S.K. Kawatra, Miner. Process. Extr. Metall. Rev. 30, 1-51 (2008).
  • [2] Y. X. Qu, Z. S. Zou, Y. P. Xiao, ISIJ Int. 52, 2186-2193 (2012).
  • [3] M. Y. Kou, S. L. Wu, W. Shen, K. P. Du, L. H. Zhang, J. Sun, ISIJ Int. 53, 2080-2089 (2013).
  • [4] Q. F. Hou, M. Samman, J. Li, A. B. Yu, ISIJ Int. 54, 1772-1780 (2014).
  • [5] H. Zhou, Z. S. Zou, Z. G. Luo, T. Zhang, Y. You, H. F. Li, Ironmaking Steelmaking 42, 209–216 (2015).
  • [6] Q. F. Hou, J. Li, A. B. Yu, Steel Res. Int. 86, 626-635 (2015).
  • [7] M. Y. Kou, S. L. Wu, G. Wang, B. J. Zhao, Q. W. Cai, Steel Res. Int. 86, 686-694 (2015).
  • [8] H. Zhou, Z. G. Luo, Z. S. Zou, T. Zhang, Y You, Steel Res. Int. 86, 1073-1081 (2015).
  • [9] H. Zhou, Z. G. Luo, T. Zhang, Y. You, Z. S. Zou, Ironmaking Steelmaking 42, 774-784 (2015).
  • [10] H. Zhou, Z. G. Luo, T. Zhang, Y. You, Z. S. Zou, Y. S. Shen, ISIJ Int. 56, 245-254 (2016).
  • [11] Y. W. Yu, A. Westerlund, T. Paananen, H. Saxén, ISIJ Int. 51, 1050-1056 (2011).
  • [12] J. Bridgwater, N. W. Sharpe, D. C. Stocker, Trans. Inst. Chem. Eng. 47, 144-199 (1969).
  • [13] J. Bridgwater, N. D. Ingram, Trans. Inst. Chem. Eng. 49, 163-169 (1971).
  • [14] A. M. Scott, J. Bridgwater, Powder Tech. 14, 177–183 (1976).
  • [15] I. Ippolito, L. Samson, S. Bourles, J. P. Hulin, Eur. Phys. J. E 3, 227-236 (2000).
  • [16] P. Richard, L. Oger, J. Lemaître, L. Samson, N.N. Medvedev, Granular Matter 1, 203-211 (1999).
  • [17] F. Lomine, L. Oger, J. Stat. Mech.: Theory Exp. July, P07019 (2006).
  • [18] F. Lomine, L. Oger, Phys. Rev. E 79, 051307 (2009).
  • [19] M. Rahman, H. P. Zhu, A. B. Yu, J. Bridgwater, Particuology 6, 475-482 (2008).
  • [20] H. P. Zhu, M. Rahman, A. B. Yu, J. Bridgwater, P. Zulli, Miner. Eng. 22, 961-969 (2009).
  • [21] J. Li, A. B. Yu, J. Bridgwater, S. L. Rough, Powder Tech. 203, 397-403 (2010).
  • [22] Y. W. Yu, H. Saxén, ISIJ Int. 52, 788-796 (2012).
  • [23] S. Natsui, S. Ueda, M. Oikawa, Z. Y. Zheng, J. Kano, R. Inoue, T. Ariyama, ISIJ Int. 49, 1308-1315 (2009).
  • [24] Q. Li, M. X. Feng, Z. S. Zou, ISIJ Int. 53, 1365-1371 (2013).
  • [25] T. Ariyama, S. Natsui, T. Kon, S. Ueda, S. Kikuchi. H. Nogami, ISIJ Int. 54,1457-1471 (2014).
  • [26] H. F. Li, Z. G. Luo, Z. S. Zou, J. J. Sun, L. H. Han. Z. X. Di, J. Iron Steel Res. Int. 19, 36-42 (2012).
  • [27] J. J. Sun, Z. G. Luo, Z. S. Zou, Powder Technol. 281, 159-166 (2015).
  • [28] L. H. Han, Z. G. Luo, H. Zhou, Z. S. Zou, Y. Z. Zhang. J. Iron Steel Res. Int. 22, 304-310 (2015).
  • [29] Y. C. Zhou, B. H. Xu, A. B. Yu, P. Zulli, Powder Tech. 125, 45-54 (2002).
Uwagi
EN
The authors would like to thank National Key Technology R&D Program in "12th Five-Year Plan" of China (Grant No. 2011BAE04B02) and National Natural Science Foundation of China (Grant No. 51174053) for their financial support.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6697b01-369a-4ae8-9264-eedc0cbb0bb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.