Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: In wound ballistics, skin has obvious blocking effect in the biological target penetration of projectiles. An analytical description of skin mechanical properties under compression can set the basis for the numerical simulation and the evaluation of blocking effect. Methods: In this study, an improved three-parameter solid visco-elastic model was proposed to describe the skin creep phenomenon. And then combined with Maxwell and Ogden model, a new nonlinear skin constitutive model, consisting of hyper-elastic unit, creep unit and relaxation unit in parallel, was established. Here, we examine the material properties of freshly harvested porcine skin in compression at strain rates from 0.01/s to 4000/s. Results: The model is verified by comparison with the experimental results by our test and that in the literature at different strain rates. Conclusions: It shows that calculated results of the constitutive model agree well with the experiment data at extremely low to high strain rates, which is useful for the description of the heterogeneous, nonlinear viscoelastic, relaxation and creep mechanical response of skin under compression.
Czasopismo
Rocznik
Tom
Strony
161--171
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- School of Mechanical Engineering, Nantong University, Nantong, China
autor
- School of Mechanical Engineering, Nantong University, Nantong, China
autor
- School of Mechanical Engineering, Nantong University, Nantong, China
autor
- School of Mechanical Engineering, Nantong University, Nantong, China
autor
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing, China
autor
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing, China
autor
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing, China
autor
- School of Aerospace Engineering, Guizhou Institute of Technology, Guiyang, China
Bibliografia
- [1] ANNAIDH A.N., BRUYÈRE K., DESTRADE M., GILCHRIST M.D., OTTÉNIO M., Characterization of the anisotropic mechanical properties of excised human skin, J. Mech. Behav. Biomed. Mater., 2012, 5 (1), 139–148.
- [2] BAO Z.Y., Study on dynamic mechanical properties of biological soft tissue, Dissertation, Nanjing University of Science and Technology, 2019.
- [3] BELFIORE L.A., Physical properties of macromolecules, John Wiley & Sons, 2010.
- [4] BUTLER B.J., BODDY R.L., BO C., ARORA H., WILLIAMS A., PROUD W.G., BROWN K.A., Composite nature of fresh skin revealed during compression, Bioinsp. Biomim. Nanobiomater., 2015, 4 (2), 133–139.
- [5] CHEN W., LU F., FREW D.J., FORRESTAL M.J., Dynamic Compression Testing of Soft Material, ASME J. Appl. Mech., 2002, 69 (3), 214–223.
- [6] DE MEY J.G., CLAEYS M., VANHOUTTE P.M., Endotheliumdependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery, J. Pharmacol. Exp. Ther., 1982, 222 (1), 166–173.
- [7] DIMAIO V.J., COPELAND A.R., BESANT-MATTHEWS P.E., FLETCHER L.A., JONES A., Minimal velocities necessary for perforation of skin by air gun pellets and bullets, J. Forensic. Sci., 1982, 27 (4), 894–899.
- [8] DOUGHERTY P.J., NAJIBI S., SILVERTON C., VAIDYA R., Gunshot wounds: epidemiology, wound ballistics, and soft-tissue treatment, Instr. Course. Lect., 2009, 58, 131–139.
- [9] FACKLER M.L., Wound ballistics and the scientific background: book review, Wound. Ballistics. Rev., 1994, 2, 46–48.
- [10] FINLAY B., Dynamic mechanical testing of human skin “in vivo”, J. Biomech., 1970, 3 (6), 559–568.
- [11] GHORBEL-FEKI H., MASOOD A., CALIEZ M., GRATTON M., PITTET J. C., LINTS M., DOS SANTOS S., Acousto-mechanical behaviour of ex vivo skin: Nonlinear and viscoelastic properties, Comptes. Rendus. Mécanique., 2019, 347 (3), 218–227.
- [12] GROVES R.B., COULMAN S.A., BIRCHALL J.C., EVANS S.L., An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin, J. Mech. Behav. Biomed. Mater., 2013, 18, 167–180.
- [13] HAUT R.C., The effects of orientation and location on the strength of dorsal rat skin in high and low speed tensile failure experiments, J. Biomech. Eng., 1989, 111, 136–140.
- [14] HOLT B., TRIPATHI A., MORGAN J., Viscoelastic response of human skin to low magnitude physiologically relevant shear, J. Biomech., 2008, 41 (12), 2689–2695.
- [15] KARIMI A., FATURECHI R., NAVIDBAKHSH M., HASHEMI S.A., A non-linear hyperelastic behavior to identify the mechanical properties of rat skin under uniaxial loading, J. Mech. Med. Biol., 2014, 14 (5), 1–14.
- [16] KOENE L., PAPY A., Towards a better, science-based, evaluation of kinetic non-lethal weapons, Int. J. Intelligent. Defence. Support. Systems., 2011, 4 (2), 169–186.
- [17] ŁAGAN S.D., LIBER-KNEĆ A., Experimental testing and constitutive modeling of the mechanical properties of the swine skin tissue. Act. Bioeng. Biomech., 2017, 19 (2), 93–102.
- [18] LAMERS E., VAN KEMPEN T.H.S., BAAIJENS F.P.T., PETERS G.W.M., OOMENS C.W.J., Large amplitude oscillatory shear properties of human skin, J. Mech. Behav. Biomed. Mater., 2013, 28, 462–470.
- [19] LANIR Y., FUNG Y.C., Two-dimensional mechanical properties of rabbit skin – I. Experimental system, J. Biomech., 1974, 7, 29–34.
- [20] LAPEER R.J., GASSON P.D., KARRI V., Simulating plastic surgery: From human skin tensile tests, through hyperelastic finite element models to real-time haptics, Prog. Biophys. Mol. Bio., 2010, 103 (2–3), 208–216.
- [21] LI W., LUO X.Y., An Invariant-Based Damage Model for Human and Animal Skins, Ann. Biomed. Eng., 2016, 44, 3109–3122.
- [22] LIM J., HONG J., CHEN W.W., WEERASOORIYA T., Mechanical response of pig skin under dynamic tensile loading, Int. J. Impact. Eng., 2011, 38 (2), 130–135.
- [23] LIU K., WU Z.L., REN H.L., LI Z.X., NING J.G., Strain rate sensitive compressive response of gelatine: Experimental and constitutive analysis, Polym. Testing., 2017, 6, 254–266.
- [24] MISSLIWETZ J., Critical velocity in skin (an experimental ballistic study with firearms of 4 mm and 4.5 mm calibers), Beitr. Gerichtl. Med., 1987, 45, 411–432.
- [25] NICOLLE S., DECORPS J., FROMY B., PALIERNE J.-F., New regime in the mechanical behavior of skin: strain-softening occurring before strain-hardening, J. Mech. Behav. Biomed. Mater., 2017, 69, 98–106.
- [26] PISSARENKO A., MEYERS M.A., The materials science of skin: Analysis, characterization, and modeling, Prog. Mater. Sci., 2020, 110, 100634.
- [27] REIHSNER R., MENZEL E.J., Two-dimensional stress–relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine, J. Biomech., 1998, 31 (11), 985–993.
- [28] RIDGE M.D., WRIGHT V., The directional effects of skin, J. Invest. Dermatol., 1965, 46, 341–6.
- [29] RUBIN M.B., BODNER S.R., BINUR N.S., An elastic-viscoplastic model for excised facial tissues, J. Biomech. Eng., 1998, 120 (5), 686–689.
- [30] SCHNEIDER D.C., DAVIDSON T.M., NAHUM A.M., In vitro biaxial stress–strain response of human skin, Arch. Otolaryngol., 1984, 110 (5), 329–333.
- [31] SHERGOLD O.A., FLECK N.A., RADFORD D., The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, Int. J. Impact. Eng., 2006, 32 (9), 1384–1402.
- [32] SOETENS J.F.J., VAN VIJVEN M., BADER D.L., PETERS G.W.M., OOMENS C.W.J., A model of human skin under large amplitude oscillatory shear, J. Mech. Behav. Biomed. Mater., 2018, 86, 423–432.
- [33] TAUSCH D., SATTLER W., WEHRFRITZ K., WEHRFRITZ G., WAGNER H.J., Experiments on the penetration power of various bullets into skin and muscle tissue, Z. Rechtsmed., 1978, 81 (4), 309–328.
- [34] WEISS J.A., MAKER B.N., GOVINDJEE S., Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comput. Meth. Appl. Mech. Eng., 1996, 135, 107–128.
- [35] WU J.Z., DONG R.G., SMUTZ P., SCHOPPER A.W., Nonlinear and Viscoelastic Characteristics of Skin Under Compression: Experiment and Analysis, Biomed. Mater. Eng., 2003, 13 (4), 373–385.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e669195f-2679-4083-bcd1-50e48b9a9e33