PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Temperature Isothermal Oxidation at 950°C of Ni-based Fe-40Ni-24Cr Alloy

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of different heat treatment temperatures on the isothermal oxidation of Ni-based Fe-40Ni-24Cr alloy was studied. The alloy underwent a heat treatment process at 1000°C and 1200°C for 3 hours of soaking time, followed by water quenching. These samples are labeled as N10 and N12. The heat-treated samples were characterized in terms of grain size using an optical microscope and hardness testing using a Rockwell hardness. As a result, increasing the heat treatment temperature increases the average grain size of the alloy and lowers the hardness value. Heat-treated N10 and N12 samples were subjected to an isothermal oxidation test at 950°C for an exposure time of 150 h. Oxidized heat-treated samples were characterized in terms of oxidation kinetics calculated based on weight change per surface area as a function of time. In addition, phase analysis and oxide surface morphology were measured using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. As a result, the oxidation kinetics of both samples showed a pattern of weight gain with N10 recording the lowest weight gain. Both samples obey a parabolic rate law, indicating a controlled oxide growth rate. N10 recorded the lowest parabolic rate constant of 2.5×10-8 mg2cm-4s-1, indicating a low oxidation rate, thus having good oxidation resistance. Phase analysis using XRD shows that several oxide phases have been formed consisting of Cr-containing oxides Cr2O3 and MnCr2O4. In addition, SEM analysis displayed a uniform oxide layer formed on the N10 sample, indicating good oxide adhesion. This finding shows an important contribution to the oxidation protection mechanism that records the fine grain obtained from the heat treatment process can increase good oxidation resistance.
Twórcy
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, Surface Technology Special Interest Group, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, Surface Technology Special Interest Group, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering & Technology, 02600 Arau, Perlis, Malaysia
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 42-201 Częstochowa, Poland
  • Gheorghe Asachi Technical University of Iasi, Faculty of Material Science and Engineering, 41 D. Mangeron St., 700050 Iasi, Romania
Bibliografia
  • [1] X. Wang, J.A. Szpunar, Effects of grains sizes on the oxidation behavior of Ni-based alloy 230 and N. Journal of Alloys and Compounds 752, 40-52 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.04.173
  • [2] T.D. Nguyen, J. Zhang, D.J. Young, Effect of Mn on oxide formation by Fe-Cr and Fe-Cr-Ni alloys in dry and wet CO2 gases at 650°C. Corrosion Science 112, 110-127 (2016). DOI: https://doi.org/10.1016/j.corsci.2016.07.014
  • [3] C.N. Athreya, K. Deepak, D.I. Kim, B. Boer, S. Mandal, V.S. Sarma, Role of grain boundary engineered microstructure on high temperature stream oxidation behavior of Ni based superalloy alloy 617. Journal of Alloys and Compounds 778, 224-233 (2019). DOI: https://doi.org/10.1016/j.jallcom.2018.11.137
  • [4] J. Jiang, G. Xiao, Y. Wang, Y. Liu, High temperature oxidation behavior of the wrought Ni-based superalloy GH4037 in the solid and semi-solid state. Journal of Alloys and Compounds 784, 394-404 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.01.093
  • [5] L. Jung-Uk, K. Young-Kyun, S. Seong-Moon, L. Kee-Ahn, High Temperature Oxidation Property of Ni Based Superalloy CM247LC Produced Via Selective Laser Melting Process. Arch. Metall. Mater. 68 (1), 107-112 (2023). DOI: https://doi.org/10.24425/amm.2023.141481
  • [6] Z. Nanfu, W. Zheng, L. Yang, L. Xinghong, J. Tao, Columnar Dendrite Morphology and Solute Concentration of GH3039 Nickel-Based Superalloys during Wire and Laser Additive Manufacturing: Insights from Phase Field Simulations. Arch. Metall. Mater. 68 (1), 387-393 (2023). DOI: https://doi.org/10.24425/amm.2023.143673
  • [7] S. Dodla, Experimental Investigation of Tool Wear in Vibration-Assisted Turning of Inconel 718. Arch. Metall. Mater. 67 (3), 949-953 (2022). DOI: https://doi.org/10.24425/amm.2022.139687
  • [8] R.C. Reed, C.M.F. Rae, Physical Metallurgy of the Nickel-Based Superalloys. Physical Metallurgy (Fifth Edition), 2215-2290 (2014). DOI: https://doi.org/10.1016/B978-0-444-53770-6.00022-8
  • [9] L. Sharma, S.K. Chaubey, To Study the Microstructural Evolution of EN353 Steel under Different Heat Treatment Conditions. Arch. Metall. Mater. 68 (2), 423-430 (2023). DOI: https://doi.org/10.24425/amm.2023.142418
  • [10] G.R. Holcomb, D.E. Alman, The Effect of Manganese Additions on the Reactive Evaporation of Chromium in Ni-Cr Alloys, Scripta Materialia 54 (10), 1821-1825 (2006). DOI: https://doi.org/10.1016/j.scriptamat.2006.01.026
  • [11] Y.X. Xu, J.T. Lu, W.Y. Li, X.W. Yang, Oxidation behavior of Nb-rich Ni-Cr-Fe alloys: Role and effect of carbides precipitates. Corrosion Science 140, 252-259 (2018). DOI: https://doi.org/10.1016/j.corsci.2018.05.040
  • [12] Y.X. Xu, J.T. Lu, X.W. Yang, J.B. Yan, W.Y. Li, Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000°C. Corrosion Science 127, 10-20 (2017). DOI: https://doi.org/10.1016/j.corsci.2017.08.003
  • [13] G. Dercz, I. Matula, K. Prusik, J. Zajac, M. Szklarska, A. Kazek-Kesik, W. Simka, Effect of Nb and Zr alloying additives on structure and properties of Ti-Ta-Nb-Zr alloys for medical applications. Arch. Metall. Mater. 68 (3), 1137-1142 (2023). DOI: https://doi.org/10.24425/amm.2023.145485
  • [14] Y.H. Cho, G.S. Ham, S.Y. Park, C.P. Kim, K.A. Lee, Effect of Nb and Mo Addition on the Microstructure and Wear Behavior of Fe-Cr-B Based Metamorphic Alloy Coating Layer Manufactured by Plasma Spray Process. Arch. Metall. Mater. 67 (4), 1521-1524 (2022). DOI: https://doi.org/10.24425/amm.2022.141086
  • [15] J. Zurek, D.J. Young, E. Essuman, M. Hänsel, H.J. Penkalla, L. Niewolak, W.J. Quadakkers, Growth and Adherence of Chromia Based Surface Scales on Ni-Base Alloys in High- and Low-pO2 Gases. Materials Science and Engineering: A 477 (1-2), 259-270 (2008). DOI: https://doi.org/10.1016/j.msea.2007.05.035
  • [16] B. Kurowski, D. Oleszak, Influence of Aluminium ans Solicon Content on the Phase Composition, Microstructure and Magnetic and Mechanical Properties of Multicomponent FeNiCoAlSi Alloys. Arch. Metall. Mater. 68 (2), 765-768 (2023). DOI: https://doi.org/10.24425/amm.2023.142459
  • [17] N. Parimin, E. Hamzah, Effect of Nb on Oxide Formation by Isothermal Oxidation of Solution Treated Fe-40Ni-24Cr Ni-Based Alloy. Solid State Phenomena 336, 11-16 (2022). DOI: https://doi.org/10.4028/p-2je8fv
  • [18] A. Munitz, S. Salhov, G. Guttmann, N. Derimow, M. Nahmany, Heat treatment influence on the microstructure and mechanical properties of AlCrFeNiTi0.5 high entropy alloys. Materials Science and Engineering A 742, 1-14 (2019). DOI: https://doi.org/10.1016/j.msea.2018.10.114
  • [19] N. Parimin, E. Hamzah, Oxidation Kinetics of Fe-Ni-Cr Alloy at 900ºC. Materials Science Forum 1010, 58-64 (2020). DOI: https://doi.org/10.4028/www.scientific.net/MSF.1010.58
  • [20] A. Munitz, L. Meshi, M.J. Kaufman, Heat treatments’ effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy. Materials Science and Engineering A 689, 384-394 (2017). DOI: https://doi.org/10.1016/j.msea.2017.02.072
  • [21] N. Parimin, E. Hamzah, Influence of Solution Treatment Temperature on the Microstructure of Ni-based HR-120 Superalloy. IOP Conference Series: Materials Science and Engineering 957, 012003 (2020). DOI: https://doi.org/10.1088/1757-899X/957/1/012003
  • [22] J.F. Zhang, Y.F. Tu, J. Xu, J.S. Zhang, J.L. Zhang, Effect of Solid Solution Treatment on Microstructure of Fe-Ni Based High Strength Low Thermal Expansion Alloy. Journal of Iron and Steel Research, International 15 (1), 75-78 (2008). DOI: https://doi.org/10.1016/S1006-706X(08)60016-3
  • [23] N. Parimin, E. Hamzah, Role of Mn Alloying Element on the Oxide Growth Behavior of 800H Nickel-Based Alloy at 900°C. Solid State Phenomena 336, 17-22 (2022). DOI: https://doi.org/10.4028/p-qel84v
Uwagi
This research was funded by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme (FRGS) FRGS/1/2020/TK0/UNIMA)/02/43.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6616678-62fb-42fa-85b8-97a4e07240bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.