PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilizing waste polyethylene for improved properties of asphalt binders and mixtures: A review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This review highlights the effects of adding to asphalt binder and asphalt mixtures, emphasizing its growing adoption globally due to environmental and economic advantages. The analysis evaluates the performance of asphalt binders and concrete mixtures modified with different forms of polyethylene (PE), including low-density polyethylene (LDPE) and high-density polyethylene (HDPE). The review revealed that incorporating waste polyethylene significantly enhances key properties of asphalt mixtures. Specifically, PE addition increases the softening point, viscosity, and specific gravity while reducing penetration. Furthermore, it improves the complex shear modulus, thermal stability, moisture resistance, and resistance to permanent deformation, although it may lead to a decrease in bulk density and creep rate of modified mixtures. The optimal PE content is recommended to be in the range of 4–12% by weight of binder, yielding substantial improvements in Marshall stability, flow, voids in mineral aggregates (VMA), air voids, dynamic modulus, and overall strength.
Twórcy
  • Department of Civil Engineering, Ajloun National University, P.O. Box 43, Ajloun, 26810, Jordan
  • Department of Civil Engineering, Ajloun National University, P.O. Box 43, Ajloun, 26810, Jordan
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Department of Mechanical Engineering, Faculty of Engineering, Tafila Technical University, Tafila, Jordan
  • School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, 40450, Malaysia
  • Authority of Natural Science Research and Technology, Tripoli, 00218, Libya
autor
  • Department of Mechanical Engineering, Tuskegee University, Tuskegee, AL 36088, USA
Bibliografia
  • 1. Sqoor S, Sarireh M, Alahmer A, Tarawneh W. Feasibility of using volcanic tuff stone in ground heat exchange for cooling and heating systems in buildings. Int J Therm Environ Eng 2015;9:33–39. https://doi.org/10.5383/ijtee.09.01.005.
  • 2. Abduljabbar N, Al-Busaltan S, Dulaimi A, Al-Yasari R, Sadique M, Nageim H Al. The effect of waste low-density polyethylene on the mechanical properties of thin asphalt overlay. Constr Build Mater 2022;315:125722. https://doi.org/10.1016/j.conbuildmat.2021.125722.
  • 3. Wang T. Study and application of compatibility of waste polyethylene-modified asphalt. J Mater Civ Eng 2022;34:4022203. https://doi.org/10.1061/(ASCE)MT.1943-5533.000431.
  • 4. Shi H, Xu T, Zhou P, Jiang R. Combustion properties of saturates, aromatics, resins, and asphaltenes in asphalt binder. Constr Build Mater 2017;136:515–523. https://doi.org/10.1016/j.conbuildmat.2017.01.064.
  • 5. Tarsi G, Tataranni P, Sangiorgi C. The challenges of using reclaimed asphalt pavement for new asphalt mixtures: A review. Materials (Basel) 2020;13:4052. https://doi.org/10.3390/ma13184052.
  • 6. Alshareef AH. Asphaltenes: Definition, properties, and reactions of model compounds. Energy & Fuels 2019;34:16–30.
  • 7. Rafiq Kakar M, Mikhailenko P, Piao Z, Poulikakos LD. High and low temperature performance of polyethylene waste plastic modified low noise asphalt mixtures. Constr Build Mater 2022;348:128633. https://doi.org/10.1016/j.conbuildmat.2022.128633.
  • 8. Ahmadinia E, Zargar M, Karim MR, Abdelaziz M, Ahmadinia E. Performance evaluation of utilization of waste polyethylene terephthalate (PET) in stone mastic asphalt. Constr Build Mater 2012;36:984–989. https://doi.org/10.1016/j.conbuildmat.2012.06.015.
  • 9. Alsaqoor S, Borowski G, Alahmer A, Beithou N. Using adhesives and binders for agglomeration of particle waste resources. Adv Sci Technol Res J 2022;16:124–35. https://doi.org/10.12913/22998624/149456.
  • 10. Brasileiro L, Moreno-Navarro F, Tauste-Martínez R, Matos J, Rubio-Gámez MD. Reclaimed polymers as asphalt binder modifiers for more sustainable roads: A review. Sustainability 2019;11:646. https://doi.org/10.3390/su11030646.
  • 11. Wang D, Baliello A, Poulikakos L, Vasconcelos K, Kakar MR, Giancontieri G, et al. Rheological properties of asphalt binder modified with waste polyethylene: An interlaboratory research from the RILEM TC WMR. Resour Conserv Recycl 2022;186:106564. https://doi.org/10.1016/j.resconrec.2022.106564.
  • 12. Sharma A, Singh S. Experimental study on use of waste HDPE, LDPE, and chloroprene rubber in bituminous concrete. Int J Innov Technol Explor Eng 2019;8:306–11.
  • 13. Ogundairo TO, Olukanni DO, Akinwumi II, Adegoke DD. A review on plastic waste as sustainable resource in civil engineering applications. IOP Conf Ser Mater Sci Eng 2021;1036:12019. https://doi.org/10.1088/1757-899X/1036/1/012019.
  • 14. da Silva AJR, de Figueiredo Lopes Lucena AE, de Medeiros Melo Neto O, Mendonça AMGD, Costa DB, de Lima RKB. Effects of using waste high-density polyethylene on the rheological, mechanical, and thermal performance of asphalt materials. Environ Dev Sustain 2024;26:16683–710. https://doi.org/10.1007/s10668-023-03306-w.
  • 15. Revelli V, Ali A, Mehta Y, Cox BC, Lein W. Evaluating the impact of variability in the source of waste polyethylene on the design of plastic modified asphalt mixtures. Constr Build Mater 2024;442:137639. https://doi.org/10.1016/j.conbuildmat.2024.137639.
  • 16. Heydari S, Javadi NHS, Bayat H, Hajimohammadi A. Assessment of binder modification in dry-added waste plastic modified asphalt. Polymers (Basel) 2024;16:1987. https://doi.org/10.3390/polym16141987.
  • 17. Li H, Han Y, Guangxun E, Sun Y, Wang L, Liu X, et al. Recycling of waste polyethylene in asphalt and its performance enhancement methods: A critical literature review. J Clean Prod 2024;451:142072. https://doi.org/10.1016/j.jclepro.2024.142072.
  • 18. García Mainieri JJ, Al-Qadi IL, Ghabchi R. Effects of waste high-density polyethylene (HDPE) on asphalt binder and airfield mixes. Int J Pavement Eng 2024;25:2303661. https://doi.org/10.1080/10298436.2024.2303661.
  • 19. Miłkowski W. Catalytic modification of road asphalt by polyethylene. J Transp Eng 1985;111:54–72.
  • 20. Nizamuddin S, Jamal M, Gravina R, Giustozzi F. Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical, and rheological properties of bitumen. J Clean Prod 2020;266:121988. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121988.
  • 21. Fitri II, Framulya N, Wulandari T. Development of asphalt mixture with plastic waste additives to improve road pavement performance. Inov Sos J Pengabdi Kpd Masy 2023;1:14–7.
  • 22. Almeida A, Capitão S, Bandeira R, Fonseca M, Picado-Santos L. Performance of AC mixtures containing flakes of LDPE plastic film collected from urban waste considering ageing. Constr Build Mater 2020;232:117253. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.117253.
  • 23. Bueno IM, Teixeira JESL. Waste plastic in asphalt mixtures via the dry method: A bibliometric analysis. Sustainability 2024;16:4675. https://doi.org/10.3390/su16114675.
  • 24. Lee S-Y, Kim K-W, Yun Y, Minh Le TH. Evaluation of eco-friendly asphalt mixtures incorporating waste plastic aggregates and additives: Magnesium, fly ash, and steel slag. Case Stud Constr Mater 2024;20:e02756. https://doi.org/https://doi.org/10.1016/j.cscm.2023.e02756.
  • 25. Beainy F, Singh D, Commuri S, Zaman M. Laboratory and field study on compaction quality of an asphalt pavement. Int J Pavement Res Technol 2014;7:317.
  • 26. Ramshankar P, Sukumar B, Aishwarya R, Darshan PR, Hrithik. Experimental investigation on bituminous pavement using construction demolition waste and plastic waste. Indian J Sci Technol 2023;16:1546–54. https://doi.org/10.17485/IJST/v16i21.1792.
  • 27. Beskou ND, Muho EV. Review on dynamic response of road pavements to moving vehicle loads; part 2: Flexible pavements. Soil Dyn Earthq Eng 2023;175:108248. https://doi.org/https://doi.org/10.1016/j.soildyn.2023.108248.
  • 28. Alamayreh MI, Alahmer A, Younes MB, Bazlamit SM. Pre-cooling concrete system in massive concrete production: Energy analysis and refrigerant replacement. Energies 2022;15:1129. https://doi.org/10.3390/en15031129.
  • 29. Fusco R, Moretti L, Fiore N, D’Andrea A. Behavior evaluation of bituminous mixtures reinforced with nano-sized additives: A review. Sustainability 2020;12:8044. https://doi.org/10.3390/su12198044.
  • 30. Porto M, Caputo P, Loise V, Eskandarsefat S, Teltayev B, Oliviero Rossi C. Bitumen and bitumen modification: A review on latest advances. Appl Sci 2019;9:742. https://doi.org/10.3390/app9040742.
  • 31. Arif SH, Abdulah NM, Mohsin TA, Musa VA. Additives influence on the properties of asphalt binders: A case study. Eng Technol Appl Sci Res 2023;13:10565–70. https://doi.org/10.48084/etasr.5789.
  • 32. Ameri M, Ebrahimzadeh Shiraz M. A review of the studies on the effect of different additives on the fatigue behavior of asphalt mixtures. Adv Civ Eng 2024;2024:6695747. https://doi.org/https://doi.org/10.1155/2024/6695747.
  • 33. Rohayzi NF, Katman HY, Ibrahim MR, Norhisham S, Rahman NA. Potential additives in natural rubber-modified bitumen: A review. Polymers (Basel) 2023;15:1951. https://doi.org/10.3390/polym15081951.
  • 34. Al-Hadidy AI, Yi-qiu T. Effect of polyethylene on life of flexible pavements. Constr Build Mater 2009;23:1456–64. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2008.07.004.
  • 35. Lastra-González P, Calzada-Pérez MA, Castro-Fresno D, Vega-Zamanillo Á, Indacoechea-Vega I. Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste. Constr Build Mater 2016;112:1133–40. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.02.156.
  • 36. Fernandes S, Costa L, Silva H, Oliveira J. Effect of incorporating different waste materials in bitumen. Ciência Tecnol Dos Mater 2017;29:204–209. https://doi.org/https://doi.org/10.1016/j.ctmat.2016.07.003.
  • 37. Abdul-Kader AM, Salem AM, Al-Omari AH, El-Gendy YA, Al-Rashdi A. Improve the structure and optical surface properties of LDPE by ion bombardment technique. Opt Mater (Amst) 2021;114:110940. https://doi.org/https://doi.org/10.1016/j.optmat.2021.110940.
  • 38. Wong SF, Htwe AA, Oh SH, Leo TY, Cheng J, Tay BK. Utilization of waste plastics in stone mastic asphalt for infrastructural applications. Mater. Sci. Forum, vol. 902, Trans Tech Publ; 2017, 55–59. https://doi.org/10.4028/www.scientific.net/MSF.902.55.
  • 39. Fang C, Wu C, Hu J, Yu R, Zhang Z, Nie L, et al. Pavement properties of asphalt modified with packaging-waste polyethylene. J Vinyl Addit Technol 2014;20:31–35. https://doi.org/https://doi.org/10.1002/vnl.21328.
  • 40. Du Z, Jiang C, Yuan J, Xiao F, Wang J. Low temperature performance characteristics of polyethylene modified asphalts – A review. Constr Build Mater 2020;264:120704. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.120704.
  • 41. Brown EN, Willms RB, Gray GT, Rae PJ, Cady CM, Vecchio KS, et al. Influence of molecular conformation on the constitutive response of polyethylene: A comparison of HDPE, UHMWPE, and PEX. Exp Mech 2007;47:381–393. https://doi.org/10.1007/s11340-007-9045-9.
  • 42. Münstedt H. Various features of melt strain hardening of polymeric materials in uniaxial extension and their relation to molecular structure: review of experimental results and their interpretation. Rheol Acta 2023;62:333–363. https://doi.org/10.1007/s00397-023-01400-4.
  • 43. Desidery L, Lanotte M. 1 - Polymers and plastics: Types, properties, and manufacturing. In: Giustozzi F, Nizamuddin SBT-PW for SAR, editors. Woodhead Publ. Ser. Civ. Struct. Eng., Woodhead Publishing; 2022, 3–28. https://doi.org/10.1016/B978-0-323-85789-5.00001-0.
  • 44. Rahman MN, Ahmeduzzaman M, Sobhan MA, Ahmed TU. Performance evaluation of waste polyethylene and PVC on hot asphalt mixtures. Am J Civ Eng Archit 2013;1:97–102.
  • 45. Biron M. A practical guide to plastics sustainability: concept, solutions, and implementation. William Andrew; 2020.
  • 46. Vuppaladadiyam SSV, Vuppaladadiyam AK, Sahoo A, Urgunde A, Murugavelh S, Šrámek V, et al. Waste to energy: Trending key challenges and current technologies in waste plastic management. Sci Total Environ 2024;913:169436. https://doi.org/10.1016/j.scitotenv.2023.169436.
  • 47. Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol Adv 2008;26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005.
  • 48. Yao Z, Seong HJ, Jang Y-S. Environmental toxicity and decomposition of polyethylene. Ecotoxicol Environ Saf 2022;242:113933. https://doi.org/10.1016/j.ecoenv.2022.113933.
  • 49. Wojnowska-Baryła I, Bernat K, Zaborowska M. Plastic Waste Degradation in Landfill Conditions: The Problem with Microplastics, and Their Direct and Indirect Environmental Effects. Int J Environ Res Public Health 2022;19:13223. https://doi.org/10.3390/ijerph192013223.
  • 50. El-Hiti GA, Ahmed DS, Yousif E, Al-Khazrajy OSA, Abdallh M, Alanazi SA. Modifications of Polymers through the Addition of Ultraviolet Absorbers to Reduce the Aging Effect of Accelerated and Natural Irradiation. Polymers (Basel) 2022;14:20. https://doi.org/10.3390/polym14010020.
  • 51. Yao Z, Seong HJ, Jang Y-S. Environmental toxicity and decomposition of polyethylene. Ecotoxicol Environ Saf 2022;242:113933. https://doi.org/10.1016/j.ecoenv.2022.113933.
  • 52. Ainali NM, Bikiaris DN, Lambropoulou DA. Aging effects on low- and high-density polyethylene, polypropylene, and polystyrene under UV irradiation: An insight into decomposition mechanism by Py-GC/MS for microplastic analysis. J Anal Appl Pyrolysis 2021;158:105207. https://doi.org/10.1016/j.jaap.2021.105207.
  • 53. Bacha A-U-R, Nabi I, Zaheer M, Jin W, Yang L. Biodegradation of macro- and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives. Sci Total Environ 2023;858:160108. https://doi.org/10.1016/j.scitotenv.2022.160108.
  • 54. Liu L, Xu M, Ye Y, Zhang B. On the degradation of (micro)plastics: Degradation methods, influencing factors, environmental impacts. Sci Total Environ 2022;806:151312. https://doi.org/10.1016/j.scitotenv.2021.151312.
  • 55. Sikdar S, Siddaiah A, Menezes PL. Conversion of waste plastic to oils for tribological applications. Lubricants 2020;8. https://doi.org/10.3390/lubricants8080078.
  • 56. da Silva TR, de Azevedo AR, Cecchin D, Marvila MT, Amran M, Fediuk R, et al. Application of plastic wastes in construction materials: A review using the concept of life-cycle assessment in the context of recent research for future perspectives. Materials (Basel) 2021;14:3549. https://doi.org/10.3390/ma14133549.
  • 57. Rajput PS, Yadav RK. Use of plastic waste in bituminous road construction. Int J Sci Technol Eng 2016;2:509–513.
  • 58. Lamba P, Kaur DP, Raj S, Sorout J. Recycling/reuse of plastic waste as construction material for sustainable development: a review. Environ Sci Pollut Res 2022;29:86156–79. https://doi.org/10.1007/s11356-021-16980-y.
  • 59. Duggal P, Shisodia AS, Havelia S, Jolly K. Use of waste plastic in wearing course of flexible pavement. BT - Advances in structural engineering and rehabilitation. In: Adhikari S, Bhattacharjee B, Bhattacharjee J, editors. Singapore: Springer Singapore; 2020, 177–187.
  • 60. Al-Humeidawi BH. Utilization of waste plastic and recycle concrete aggregate in production of hot mix asphalt. Al-Qadisiyah J Eng Sci 2014;7:322–330.
  • 61. Li M, Chen X, Cong P, Luo C, Zhu L, Li H, et al. Facile synthesis of polyethylene-modified asphalt by chain end-functionalization. Compos Commun 2022;30:101088. https://doi.org/10.1016/j.coco.2022.101088.
  • 62. Singh B, Kumar L, Gupta M, Chauhan GS. Polymer-modified bitumen of recycled LDPE and maleated bitumen. J Appl Polym Sci 2013;127:67–78. https://doi.org/10.1002/app.36810.
  • 63. Sk AS, Prasad KSB. Utilization of waste plastic as construction material in road pavement a strength modifier in surface course of flexible and rigid pavements. Int J Eng Res Appl 2012;2:185–191.
  • 64. Attaelmanan M, Feng CP, AI A-H. Laboratory evaluation of HMA with high density polyethylene as a modifier. Constr Build Mater 2011;25:2764–2770. https://doi.org/10.1016/j.conbuildmat.2010.12.037.
  • 65. Gupta H, Singh G. Experimental Analysis of Utilization of Waste Polyethylene in Bituminous Concrete Mixes. Int J Res Publ Rev 2020;3:1351–1354.
  • 66. Punith VS, Veeraragavan A. Behavior of asphalt concrete mixtures with reclaimed polyethylene as additive. J Mater Civ Eng 2007;19:500–507.
  • 67. Vargas MA, Vargas MA, Sánchez-Sólis A, Manero O. Asphalt/polyethylene blends: Rheological properties, microstructure and viscosity modeling. Constr Build Mater 2013;45:243–250. https://doi.org/10.1016/j.conbuildmat.2013.03.064.
  • 68. García-Travé G, Tauste R, Moreno-Navarro F, Sol-Sánchez M, Rubio-Gámez MC. Use of reclaimed geomembranes for modification of mechanical performance of bituminous binders. J Mater Civ Eng 2016;28:4016021.
  • 69. Yan K, Xu H, You L. Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene. Constr Build Mater 2015;83:143–149. https://doi.org/10.1016/j.conbuildmat.2015.02.092.
  • 70. Fang C, Zhang M, Yu R, Liu X. Effect of Preparation Temperature on the Aging Properties of Waste Polyethylene Modified Asphalt. J Mater Sci Technol 2015;31:320–324. https://doi.org/10.1016/j.jmst.2014.04.019.
  • 71. Ghani U, Zamin B, Tariq Bashir M, Ahmad M, Sabri MM, Keawsawasvong S. Comprehensive study on the performance of waste HDPE and LDPE modified asphalt binders for construction of asphalt pavements application. Polymers (Basel) 2022;14:3673. https://doi.org/10.3390/polym14173673.
  • 72. Suksiripattanapong C, Uraikhot K, Tiyasangthong S, Wonglakorn N, Tabyang W, Jomnonkwao S, et al. Performance of Asphalt Concrete Pavement Reinforced with High-Density Polyethylene Plastic Waste. Infrastructures 2022;7:72. https://doi.org/10.3390/infrastructures7050072.
  • 73. Abdulfatai MA, Rabi’u I, Suleiman A. Effects of Waste Crossed-Linked Polyethylene Electrical Waste Coating on the Properties of Bitumen. FUD-MA J Sci 2023;7:79–89.
  • 74. Hung AM, Li M, Wu G, Fini EH. Effects of liquefied waste plastics on chemical and rheological properties of bitumen. J Transp Eng Part B Pavements 2023;149:4023003.
  • 75. Bale AS. Potential reuse of plastic waste in road construction: a review. Int J Adv Eng Technol 2011;2:233–236.
  • 76. Mishra S, Khan A. Review Paper on Use of Waste Polythene in Bituminous Concrete Mixes for Flexible Pavement. Int J Innov Res Technol Manag 2022;6:31–35.
  • 77. Vargas MA, Vargas MA, Sánchez-Sólis A, Manero O. Asphalt/polyethylene blends: Rheological properties, microstructure and viscosity modeling. Constr Build Mater 2013;45:243–250. https://doi.org/10.1016/j.conbuildmat.2013.03.064.
  • 78. Al-Dubabe IA, Wahhab HIA-A, Asi IM, Ali MF. Polymer modification of Arab asphalt. J Mater Civ Eng 1998;10:161–167.
  • 79. Costa L, Fernandes S, Silva H, Oliveira J. Study of the interaction between asphalt and recycled plastics in new polymer modified binders (PMB). Ciência Tecnol Dos Mater 2017;29:192–197. https://doi.org/10.1016/j.ctmat.2016.04.005.
  • 80. Attaelmanan M, Feng CP, AI A-H. Laboratory evaluation of HMA with high density polyethylene as a modifier. Constr Build Mater 2011;25:2764–2770. https://doi.org/10.1016/j.conbuildmat.2010.12.037.
  • 81. Yan K, Xu H, You L. Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene. Constr Build Mater 2015;83:143–149. https://doi.org/10.1016/j.conbuildmat.2015.02.092.
  • 82. Fang C, Zhang M, Yu R, Liu X. Effect of Preparation Temperature on the Aging Properties of Waste Polyethylene Modified Asphalt. J Mater Sci Technol 2015;31:320–324. https://doi.org/10.1016/j.jmst.2014.04.019.
  • 83. Singh ED, Kaur EK, Kaur EL. A Review Study: Mechanical and Environmental Benefits of Plastic-Modified Bitumen in Road Construction. Int J Res Appl Sci Eng Technol 2024;12:434–438.
  • 84. Kar D, Panda M, Jena S. Utilization of waste polyethylene in open graded friction course. In: Singh D, Maji A, Karmarkar O, Gupta M, Velaga NR, Debbarma S, editors. Transportation Research. Singapore: Springer Nature Singapore; 2024, 121–132.
  • 85. Gan Z, Chen M, Zhang J, Hu J, Jiang Q, Zhang Y. Influence of waste polyethylene/WCO composite on physical and chemical properties of asphalt. Environ Sci Pollut Res 2024;31:26928–26941. https://doi.org/10.1007/s11356-024-32936-4.
  • 86. Li M, Chen X, Cong P, Luo C, Zhu L, Li H, et al. Facile synthesis of polyethylene-modified asphalt by chain end-functionalization. Compos Commun 2022;30:101088. https://doi.org/10.1016/j.coco.2022.101088.
  • 87. Tušar M, Kakar MR, Poulikakos LD, Pasquini E, Baliello A, Pasetto M, et al. RILEM TC 279 WMR round robin study on waste polyethylene modified bituminous binders: advantages and challenges. Road Mater Pavement Des 2023;24:311–339. https://doi.org/10.1080/14680629.2021.2017330.
  • 88. Costa L, Fernandes S, Silva H, Oliveira J. Study of the interaction between asphalt and recycled plastics in new polymer modified binders (PMB). Ciência Tecnol Dos Mater 2017;29:192–197. https://doi.org/10.1016/j.ctmat.2016.04.005.
  • 89. Sharma A, Dubey M. Bituminous concrete mix design using different percentage of waste polyethylene to improve the strength of road. Int J Adv Technol Eng Res 2018;8:4–9.
  • 90. Eme DB, Nwaobakata Cjnj. Effect of low density polyethylene as bitumen modifier on some properties of hot mix asphalt. Niger J Technol 2019;38:1–7. https://doi.org/10.4314/njt.v38i1.1.
  • 91. Shah SMR, Zainuddin NI, Min YH, Nasaruddin NAI, Sian TL. Reduction of optimum bitumen content in polyethylene modified bituminous mixes. Am J Civ Eng 2018;6:93–98.
  • 92. Desidery L, Lanotte M. Effect of waste polyethylene and wax-based additives on bitumen performance. Polymers (Basel) 2021;13:3733. https://doi.org/10.3390/polym13213733.
  • 93. Zhang Q, Goh SW, You ZP. Study on dynamic modulus of waste plastic modified asphalt mixture using waste plastic bag chips. Adv Mater Res 2011;261:824–828.
  • 94. Kakar MR, Mikhailenko P, Piao Z, Bueno M, Poulikakos L. Analysis of waste polyethylene (PE) and its by-products in asphalt binder. Constr Build Mater 2021;280:122492. https://doi.org/10.1016/j.conbuildmat.2021.122492.
  • 95. Padhan RK, Sreeram A. Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives. Constr Build Mater 2018;188:772–780. https://doi.org/10.1016/j.conbuildmat.2018.08.155.
  • 96. Du Z, Jiang C, Yuan J, Xiao F, Wang J. Low temperature performance characteristics of polyethylene modified asphalts – A review. Constr Build Mater 2020;264:120704. https://doi.org/10.1016/j.conbuildmat.2020.120704.
  • 97. Tušar M, Kakar MR, Poulikakos LD, Pasquini E, Baliello A, Pasetto M, et al. RILEM TC 279 WMR round robin study on waste polyethylene modified bituminous binders: advantages and challenges. Road Mater Pavement Des 2023;24:311–339. https://doi.org/10.1080/14680629.2021.2017330.
  • 98. Ma Y, Wang S, Zhou H, Hu W, Polaczyk P, Huang B. Recycled polyethylene and crumb rubber composites modified asphalt with improved aging resistance and thermal stability. J Clean Prod 2022;334:130102. https://doi.org/10.1016/j.jclepro.2021.130102.
  • 99. Nejres AM, Mustafa YF, Aldewachi HS. Evaluation of natural asphalt properties treated with egg shell waste and low density polyethylene. Int J Pavement Eng 2022;23:39–45. https://doi.org/10.1080/10298436.2020.1728534.
  • 100. Fernandes S, Costa L, Silva H, Oliveira J. Effect of incorporating different waste materials in bitumen. Ciência Tecnol Dos Mater 2017;29:204–209. https://doi.org/10.1016/j.ctmat.2016.07.003.
  • 101. Fuentes-Audén C, Sandoval JA, Jerez A, Navarro FJ, Martínez-Boza FJ, Partal P, et al. Evaluation of thermal and mechanical properties of recycled polyethylene modified bitumen. Polym Test 2008;27:1005–1012. https://doi.org/10.1016/j.polymertesting.2008.09.006.
  • 102. Ahmad MS, Ahmad SA. The impact of polyethylene terephthalate waste on different bituminous designs. J Eng Appl Sci 2022;69:53. https://doi.org/10.1186/s44147-022-00104-5.
  • 103. Jew P, Shimizu JA, Svazic M, Woodhams RT. Polyethylene-modified bitumen for paving applications. J Appl Polym Sci 1986;31:2685–2704.
  • 104. Panda M, Mazumdar M. Utilization of reclaimed polyethylene in bituminous paving mixes. J Mater Civ Eng 2002;14:527–530.
  • 105. Issa A, Sheikah A., Nazzal R, Maher A. Study the Effect of Adding High-Density Polyethylene on the Asphalt Mixture. Proc Int Struct Eng Constr 2022;9:1.
  • 106. Polacco G, Berlincioni S, Biondi D, Stastna J, Zanzotto L. Asphalt modification with different polyethylene-based polymers. Eur Polym J 2005;41:2831–2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034.
  • 107. Kakar MR, Mikhailenko P, Piao Z, Bueno M, Poulikakos L. Analysis of waste polyethylene (PE) and its by-products in asphalt binder. Constr Build Mater 2021;280:122492. https://doi.org/10.1016/j.conbuildmat.2021.122492.
  • 108. Alamayreh MI, Alahmer A, Bazlamit SM, Younes MB. Precooling massive concrete mixes using cooled aggregates or chilled water. Int Rev Civ Eng 2023;14:331–339. https://doi.org/10.15866/irece.v14i4.21805.
  • 109. Chaudhary M, Saboo N, Gupta A. Assessing the Suitability of polyethylene terephthalate (PET) in bituminous concrete mixes BT. Proceedings of the Fifth International Conference of Transportation Research Group of India. In: Singh D, Vanajakshi L, Verma A, Das A, editors. Singapore: Springer Nature Singapore; 2022, 495–506.
  • 110. Awwad MT, Shbeeb L. The use of polyethylene in hot asphalt mixtures. Am J Appl Sci 2007;4:390–396.
  • 111. Ma D, Zhao D, Zhao J, Du S, Pang J, Wang W, et al. Functionalization of reclaimed polyethylene with maleic anhydride and its application in improving the high temperature stability of asphalt mixtures. Constr Build Mater 2016;113:596–602. https://doi.org/10.1016/j.conbuildmat.2016.03.096.
  • 112. Hussein IA, Iqbal MH, Al-Abdul-Wahhab HI. Influence of Mw of LDPE and vinyl acetate content of EVA on the rheology of polymer modified asphalt. Rheol Acta 2005;45:92–104. https://doi.org/10.1007/s00397-005-0455-2.
  • 113. Bagampadde U, Kaddu D, Kiggundu BM. Evaluation of rheology and moisture susceptibility of asphalt mixtures modified with low density polyethylene. Int J Pavement Res Technol 2013;6:217.
  • 114. Lastra-González P, Calzada-Pérez MA, Castro-Fresno D, Vega-Zamanillo Á, Indacoechea-Vega I. Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste. Constr Build Mater 2016;112:1133–1340. https://doi.org/10.1016/j.conbuildmat.2016.02.156.
  • 115. Gibreil HAA, Feng CP. Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt. Constr Build Mater 2017;142:101–108. https://doi.org/10.1016/j.conbuildmat.2017.03.062.
  • 116. Roquier G. Estimation of voids in a multi-sized mineral aggregate for asphalt mixture using the theoretical packing density model. Constr Build Mater 2023;367:130302. https://doi.org/10.1016/j.conbuildmat.2023.130302.
  • 117. Wu B, Pei Z, Luo C, Xia J, Chen C, Wang M. Review and evaluation of the prediction methods for voids in the mineral aggregate in asphalt mixtures. J Mater Civ Eng 2023;35:4022455.
  • 118. Zhang H, Ma Z, Ji P, Bi Y, Cao W, Liu S. Establishment and application of theoretical-empirical prediction model of VMA in hot mix asphalt mixture. Case Stud Constr Mater 2023;18:e01986. https://doi.org/10.1016/j.cscm.2023.e01986.
  • 119. Karyawan IDMA, Ekaputri JJ, Widyatmoko I, Ahyudanari E. The effect of replacing natural aggregate with geopolymer artificial aggregates on air voids of hot mix asphalt. Int. Conf. Civ. Eng., Springer Nature Singapore; 2022, 455–467.
  • 120. Liu J, Wang Y, Wang S, Liu Q, Yu B, Wang Q. Use of X-ray computed tomography to evaluate the gradual behaviour of air voids in asphalt mixtures during permanent deformation. Int J Pavement Eng 2023;24:2134570. https://doi.org/10.1080/10298436.2022.2134570.
  • 121. Hamedi GH. Effects of Polymeric Coating the Aggregate Surface on Reducing Moisture Sensitivity of Asphalt Mixtures. Int J Civ Eng 2018;16:1097–1107. https://doi.org/10.1007/s40999-017-0263-y.
  • 122. Stuart K, Youtcheff J, Mogawer WS. Understanding the performance of modified asphalt binders in mixtures: evaluation of moisture sensitivity. US Department of Transportation. Federal Highway Administration, 2002.
  • 123. Poulikakos LD, Pasquini E, Tusar M, Hernando D, Wang D, Mikhailenko P, et al. RILEM interlaboratory study on the mechanical properties of asphalt mixtures modified with polyethylene waste. J Clean Prod 2022;375:134124. https://doi.org/10.1016/j.jclepro.2022.134124.
  • 124. Qi X, Sebaaly PE, Epps JA. Evaluation of polymer-modified asphalt concrete mixtures. J Mater Civ Eng 1995;7:117–124.
  • 125. Timm DH, Robbins MM, Kluttz RQ. Full-scale structural characterization of a highly polymer-modified asphalt pavement. 2011.
  • 126. Al-Ghannam KAA. Study on the rheological properties of asphalt, effect of modification process on the homogeneity of the system. 1996.
  • 127. Alhadidi YI, Al-Qadi IL, Mohamed Ali U, García Mainieri JJ, Sharma BK. Impact of nonrecyclable plastics on asphalt binders and mixtures. Transp Res Rec 2024:03611981241245692. https://doi.org/10.1177/03611981241245692.
  • 128. Suleiman G, Aodah HH, Hanandeh S, Ergun M, Salim RA, Qtiashat D. Investigating the dynamic creep of polymer modified hot mix asphalt. Civ Environ Eng 2024;20:387–396.
  • 129. Mohammed L, Tagbor TA, Ofori-Nyarko A, Adomah R, Yeboaa JO. Performance consideration: asphalt modified low density polyethylene waste. In: Pacheco-Torgal F, Khatib J, Colangelo F, Tuladhar RBT-R, (Eds). Woodhead Publ. Ser. Civ. Struct. Eng., 2024, 341–386. https://doi.org/10.1016/B978-0-443-13798-3.00006-1.
  • 130. Wang Q, Min Z, Cheng L, Zhang Y, Sun J, Wong YD, et al. An epoxy asphalt with polyethylene glycol chains for porous mixtures containing reclaimed asphalt pavement. Case Stud Constr Mater 2024;20:e02972. https://doi.org/10.1016/j.cscm.2024.e02972.
  • 131. Jin Y, Li H, Chen J, Wang Q, Bao Y, Hou S. Microscopic properties of asphalt and polyethylene at an extraordinary high dosage through molecular dynamics simulation. Buildings 2024;14:164. https://doi.org/10.3390/buildings14010164.
  • 132. Murana AA, Ochepo J, Yerima MA, Ejike IK. Properties of HMA containing high density polyethylene modified with reclaimed asphalt. Jordan J Civ Eng 2024;18:389–404.
  • 133. Yu S, Musazay JA, Zhang C, Hu P, Shen S. Workability of low-density polyethylene modified asphalt mixtures: A statistical analysis of particle kinematics. J Clean Prod 2024;447:141564. https://doi.org/10.1016/j.jclepro.2024.141564.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e65f81b3-8eb4-42ca-a12a-817559617b2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.